PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
2018 | 78 | Suppl.1 |

Tytuł artykułu

Synaptic plasticity in the central amygdala during addictive and natural learning

Warianty tytułu

Języki publikacji

EN

Abstrakty

EN
Drug addiction has been proposed as a form of Hebbi‑ an learning, as it creates changes in neural networks by strengthening or weakening some synapses. Similar chang‑ es occur during natural reward learning and it is believed that they are stored as encoded information-engrams. It has been suggested that drugs of abuse hijack these en‑ grams to create extremely durable forms of memories. Therefore, in this study, we aimed to test for similarities between initial exposure to an addictive substance and a natural form of learning. As a model of “addictive” learn‑ ing we chose intraperitoneal (IP) cocaine injections, while sucrose self-administration served to represent a natural form of learning. To distinguish different neuronal popu‑ lations, transgenic mice with labeled GABAergic neurons were used. All experiments were performed with contra‑ distinction between inhibitory and excitatory neurons. A series of electrophysiology experiments were performed on a specific brain pathway: the connection between pos‑ terior basolateral amygdala (pBLA) and the central medi‑ al amygdala (CeM). This pathway was recently shown to process positive memories. To ensure pathway specificity, viruses were injected into pBLA allowing for channeloro‑ dopsin2 expression in neurons. Synaptic changes were tested by whole-cell patch clamp electrophysiological re‑ cordings with the use of optogenetic stimulation. Results from electrophysiological recordings were confirmed by confocal microscopy. For this purpose brain slices were im‑ munolabeled with an antibody against c-Fos protein, which is a marker of neural plasticity. Our results indicated that indeed both cocaine IP injection and sugar administration changed the pBLA-to-CeM pathway in the same manner. In these structures we observed generation of silent synaps‑ es—immature synaptic contacts. Silent synapses contain mostly NMDA receptors(and not AMPA receptors) and may function as substrates for increased learning. Expression of c Fos protein also indicated that both sugar and cocaine contributed to structural changes in neurons in CeM. Addi‑ tionally, these changes were independent of cell-type (in‑ hibitory or excitatory). Thus, drug exposure affects a path‑ way that processes positive memories and engages similar neurons that natural learning does. Our results shed light on the debate surrounding of addiction as a form of simple, appetitive learning.

Słowa kluczowe

Wydawca

-

Rocznik

Tom

78

Numer

Opis fizyczny

p.13

Twórcy

autor
  • Laboratory of Neurobiology, Nencki Institute of Experimental Biology, Polish Academy of Sciences, Warsaw, Poland
autor
  • Laboratory of Neurobiology, Nencki Institute of Experimental Biology, Polish Academy of Sciences, Warsaw, Poland
autor
  • Laboratory of Neurobiology, Nencki Institute of Experimental Biology, Polish Academy of Sciences, Warsaw, Poland
autor
  • Laboratory of Neurobiology, Nencki Institute of Experimental Biology, Polish Academy of Sciences, Warsaw, Poland

Bibliografia

Typ dokumentu

Bibliografia

Identyfikatory

Identyfikator YADDA

bwmeta1.element.agro-4b67c7ed-bf2a-40a5-be19-d6253dd78ffc
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.