PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
2019 | 28 | 5 |

Tytuł artykułu

Analysis of the influence mechanism of energy-related carbon emissions with a novel hybrid support vector machine algorithm in Hebei, China

Autorzy

Warianty tytułu

Języki publikacji

EN

Abstrakty

EN
The Beijing-Tianjin-Hebei Region (BTH) as a national strategic highland attracts attention with its haze problem. In particular, Hebei is a major emitter of carbon emissions in BTH. The establishment of the Xiong’an New District in Hebei, known as the “Millennium plan,” faces complex and diverse development in the future, so the carbon emission prediction and influence mechanism are of great significance. This paper has made two improvements to the particle swarm optimization algorithm (PSO), then the improved algorithm is used to optimize parameters of the traditional support vector machine (SVM). Therefore, a new model, IPSO-SVM, is established. This paper uses the STIRPAT model to determine the impact factors, through 64 predict scenarios of 2017-2020 to reveal that economic growth is the most important factor of carbon emissions in Hebei, followed by resident population, industrial structure, urbanization level, energy structure, and technical level. In the case of positive economic development, the contribution of technology to carbon reduction will increase. Based on the “new normal,” Hebei ought to develop sustainable urbanization and emphasis on the role of technology in low-carbon development to control carbon emissions.

Słowa kluczowe

Wydawca

-

Rocznik

Tom

28

Numer

5

Opis fizyczny

p.3475-3487,fig.,ref.

Twórcy

autor
  • Department of Economics and Management, North China Electric Power University, Baoding, China
  • Beijing Key Laboratory of New Energy and Low-Carbon Development, North China Electric Power University, Changping, Beijing, China
autor
  • Department of Economics and Management, North China Electric Power University, Baoding, China
  • Beijing Key Laboratory of New Energy and Low-Carbon Development, North China Electric Power University, Changping, Beijing, China
autor
  • Department of Economics and Management, North China Electric Power University, Baoding, China
  • Beijing Key Laboratory of New Energy and Low-Carbon Development, North China Electric Power University, Changping, Beijing, China

Bibliografia

  • 1. YAO X., KOU D., SHAO S., LI X., WANG W., ZHANG C. Can urbanization process and carbon emission abatement be harmonious? New evidence from China. Environ Impact Assess Rev, 71, 70, 2018.
  • 2. SHAO L., LI Y., FENG K., MENG J., SHAN Y., GUAN D. Carbon emission imbalances and the structural paths of Chinese regions. Applied Energy, 215, 396, 2018.
  • 3. CETIN M., SEVIK H. Measuring the Impact of Selected Plants on Indoor CO₂ Concentrations. Polish Journal of Environmental Studies, 25 (3), 973, 2016.
  • 4. CETIN M., SEVIK H., SAAT A. Indoor Air Quality: the Samples of Safranbolu Bulak Mencilis Cave. Fresenius Environmental Bulletin, 26 (10), 5965, 2017.
  • 5. CETIN M., SEVIK H., ISINKARALAR K. Changes in the particulate matter and CO₂ concentrations based on the time and weather conditions: the case of Kastamonu. Oxidation Communications, 40 (1-II), 477, 2017.
  • 6. SEVIK H., CETIN M. Effects of Water Stress on Seed Germination for Select Landscape Plants. Polish Journal of Environmental Studies, 24 (2), 689, 2015.
  • 7. GUNEY K., CETIN M., GUNEY K.B., MELEKOGLU A. The Effects of Some Hormones Applications on Lilium martagon L. Germination and Morpholgical Characters. Polish Journal of Environmental Studies, 26 (6), 1, 2017.
  • 8. TURKYILMAZ A., SEVIK H., CETIN M., AHMAIDA SALEH E.A. Changes in Heavy Metal Accumulation Depending on Traffic Density in Some Landscape Plants. Polish Journal of Environmental Studies, 27 (5), 2277, 2018.
  • 9. WANG H., ANG B., SU B. Multiplicative structural decomposition analysis of energy and emission intensities: Some methodological issues. Energy, 123, 47, 2017.
  • 10. ANG B. LMDI decomposition approach: A guide for implementation. Energy Policy, 86, 233, 2015.
  • 11. WANG Y., ZHAO H., LI L., LIU Z., LIANG S. Carbon dioxide emission drivers for a typical metropolis using input-output structural decomposition analysis. Energy Policy, 58, 312, 2013.
  • 12. ZHAO Y., WANG S., ZHANG Z., LIU Y., AHMAD A. Driving factors of carbon emissions embodied in China – US trade: a structural decomposition analysis. Journal of Cleaner Production, 131, 678, 2016.
  • 13. SHAO S., LIU J., GENG Y., MIAO Z., YANG Y. Uncovering driving factors of carbon emissions from China’s mining sector. Applied Energy, 166, 220, 2016.
  • 14. LI A., ZHANG A., ZHOU Y., YAO X. Decomposition analysis of factors affecting carbon dioxide emissions across provinces in China. Journal of Cleaner Production, 141, 1428, 2017.
  • 15. WEINZETTEL J., KOVANDA J. Structural Decomposition Analysis of Raw Material Consumption. J Ind Ecol, 15, 893, 2011.
  • 16. FAN F., LEI Y. Factor analysis of energy-related carbon emissions: a case study of Beijing. J Clean Prod, 163, 277, 2017.
  • 17. LIU L., FAN Y., WU G., WEI Y. Using LMDI method to analyze the change of China’s industrial CO₂ emissions from final fuel use: An empirical analysis. Energy Policy, 35 (11), 5892, 2007.
  • 18. MOUTINHO V., MOREIRA A., SILVA P. The driving forces of change in energy-related CO₂ emissions in Eastern, Western, Northern and Southern Europe: The LMDI approach to decomposition analysis. Renewable and Sustainable Energy Reviews, 50, 1485, 2015.
  • 19. LIN B., LONG H. Emissions reduction in China׳s chemical industry – Based on LMDI. Renewable and Sustainable Energy Reviews, 53, 1348, 2016.
  • 20. WU Y., SHEN J., ZHANG X., SKITMORE M., LU W. The impact of urbanization on carbon emissions in developing countries: a Chinese study based on the U-Kaya method. Journal of Cleaner Production, 135, 589, 2016.
  • 21. AUFFHAMMER M. The rationality of EIA forecasts under symmetric and asymmetric loss. Resource and Energy Economics, 29 (2), 102, 2007.
  • 22. WANG A., LIN B. Assessing CO₂ emissions in China’s commercial sector: Determinants and reduction strategies. Journal of Cleaner Production, 164, 1542, 2017.
  • 23. MENG M., NIU D. Modeling CO₂ emissions from fossil fuel combustion using the logistic equation. Energy, 36(5), 3355, 2011.
  • 24. WANG Z., YE D. Forecasting Chinese carbon emissions from fossil energy consumption using non-linear grey multivariable models. Journal of Cleaner Production, 142, 600, 2017.
  • 25. DING S., DANG Y., LI X., WANG J., ZHAO K. Forecasting Chinese CO₂ emissions from fuel combustion using a novel grey multivariable model. Journal of Cleaner Production, 162, 1527, 2017.
  • 26. SUN W., LIU M. Prediction and analysis of the three major industries and residential consumption CO₂ emissions based on least squares support vector machine in China. Journal of Cleaner Production, 122, 144, 2016.
  • 27. SUN W., XU Y. Using a back propagation neural network based on improved particle swarm optimization to study the influential factors of carbon dioxide emissions in Hebei Province, China. Journal of Cleaner Production, 112, 1282, 2016.
  • 28. ZHAO H., GUO S., ZHAO H. Energy-Related CO₂ Emissions Forecasting Using an Improved LSSVM Model Optimized by Whale Optimization Algorithm. Energies, 10 (7), 874, 2017.
  • 29. SULAIMAN M., MUSTAFA M., SHAREEF H., ABD. KHALID S. An application of artificial bee colony algorithm with least squares support vector machine for real and reactive power tracing in deregulated power system. International Journal of Electrical Power & Energy Systems, 37 (1), 67, 2012.
  • 30. SHI Y., EBERHART R.C. A modified particle swarm optimizer. Proceedings of Congress on Evolutionary Computation, 69, 1998.
  • 31. CHATTERJEE A., SIARRY P. Nonlinear inertia weight variation for dynamic adaptation in particle swarm optimization. Comput Oper Res, 33 (3), 859, 2006.
  • 32. CORTES C., VAPNIK V. Support-vector networks. Mach Learn, 20 (3), 273, 1995.
  • 33. YORK R., ROSA E., DIETZ T. STIRPAT, IPAT and IMPACT: analytic tools for unpacking the driving forces of environmental impacts. Ecological Economics, 46 (3), 351, 2003.
  • 34. CHEN W., LU Y. The Framework, Routes, and Visions for a Low Carbon City: A Case Study Of Shanghai, Science Press: Beijing, 63, 2010.
  • 35. LIU Z., XU W., ZHAI X., QIAN C., CHEN X. Feasibility and performance study of the hybrid ground-source heat pump system for one office building in Chinese heating dominated areas. Renewable Energy, 101, 1131, 2017.
  • 36. WANG J., YANG F., ZHANG X., ZHOU Q. Barriers and drivers for enterprise energy efficiency: An exploratory study for industrial transfer in the Beijing-Tianjin-Hebei region. Journal of Cleaner Production, 2018. doi:10.1016/j.jclepro.2018.07.327.
  • 37. YANG L., XIA H., ZHANG X., YUAN S. What matters for carbon emissions in regional sectors? A China study of extended STIRPAT model. Journal of Cleaner Production, 180, 595, 2018,
  • 38. WANG S., LIU X., ZHOU C., HU J., OU J. Examining the impacts of socioeconomic factors, urban form, and transportation networks on CO₂ emissions in China’s megacities. Applied Energy, 185, 189, 2017.
  • 39. SHUAI C., SHEN L., JIAO L., WU Y., TAN Y. Identifying key impact factors on carbon emission: Evidences from panel and time-series data of 125 countries from 1990 to 2011. Applied Energy, 187, 310, 2017.
  • 40. SHUAI C., CHEN X., WU Y., TAN Y., ZHANG Y., SHEN L. Identifying the key impact factors of carbon emission in China: Results from a largely expanded pool of potential impact factors. Journal of Cleaner Production, 175, 612, 2018.
  • 41. KANG Z., LI K., QU J. The path of technological progress for China’s low-carbon development: Evidence from three urban agglomerations. Journal of Cleaner Production, 178, 644, 2018.

Typ dokumentu

Bibliografia

Identyfikatory

Identyfikator YADDA

bwmeta1.element.agro-4b56015c-f51e-43af-8401-70eba84f761a
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.