Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
2016 | 25 | 1 |
Tytuł artykułu

Modeling the profit from hydropower plant energy generation using dimensional analysis

Warianty tytułu
Języki publikacji
Our work presents the original mathematical model, which can be determined on the basis of the actual profits from electricity production in pumped storage hydropower plants (PSHP). The derived relationship was obtained by the dimensional analysis of the relevant physical parameters describing the production of energy. The main purpose of this paper is to prove whether a dimensional analysis can be a useful tool to describe the economic aspect of the phenomenon, as proved by its worth when examining technical phenomena. The mathematical model has been derived for PSHP Ružín in Slovakia, but its validity, based on the similarity theory, can be extended to any pumping power plant that works with the influx of water into the upper storage reservoir, and/or without the feed, respectively. The article discusses the effects of various parameters on the operating profit for the turbine operations and the costs associated with the pumping operation.
Słowa kluczowe
Opis fizyczny
  • Department of Power Engineering, Faculty of Mechanical Engineering, Technical University of Kosice, Kosice, Slovakia
  • Department of Thermal Engineering, Faculty of Metallurgy and Materials Engineering, VSB – Technical University of Ostrava, Ostrava-Poruba, Czech Republic
  • Department of Environmental Engineering, Faculty of Civil Engineering, Technical University of Kosice, Kosice, Slovakia
  • Department of Power Engineering, Faculty of Mechanical Engineering, Technical University of Kosice, Kosice, Slovakia
  • Department of Power Engineering, Faculty of Mechanical Engineering, Technical University of Kosice, Kosice, Slovakia
  • 1. ABBASPOUR M., KARBASSI A., ASADI M.K., MOHARAMNEJAD N., KHADIVI S., MORADI A.M. Energy Demand Model of the Household Sector and Its Application in Developing Metropolitan Cities (Case Study: Tehran). Pol. J. Environ. Stud. 22 (2), 319, 2013.
  • 2. WANG, B., NISTOR, I., MURTY, T. AND WEI, Y. Efficiency assessment of hydroelectric power plants in Canada: A multicriteria decision making approach. Energy Economics. 46, 112, 2014.
  • 3. ARDIZZON, G., CAVAZZINI, G., PAVESI G. A new generation of small hydro and pumped-hydro power plants: Advances and future challenges. Renewable and Sustainable Energy Reviews. 31, 746, 2014.
  • 4. BENITEZ L.E., BENITEZ P.C., VAN KOOTEN G.C. The Economics of wind power with energy storage. Energy Economics. 30, 1973, 2008.
  • 5. MUCHE T. A real option-based simulation model to evaluate investments in pump storage plants. Energy Policy. 37, 4851, 2009.
  • 6. CONNOLLY D., LUND H., FINN P., MATHIESEN B.V., LEAHY, M. Practical operation strategies for pumped hydroelectric energy storage (PHES) utilising electricity price arbitrage. Energy Policy 39, 4189, 2011.
  • 7. MUCHE T. Optimal operation and forecasting policy for pump storage plants in day-ahead markets. Applied Energy. 113, 1089, 2014.
  • 8. KAZEMPOUR S.J. Risk-constrained dynamic self-scheduling of a pumped-storage plant in the energy and ancillary service markets. Energy Convers Manage. 50, 1368, 2009.
  • 9. VIEHMANN J. Risk premiums in the German day-ahead electricity market. Energy Policy. 39, 386. 2011.
  • 10. VESPUCCI M.T., MAGGIONI F., BERTOCCHI M.I., INNORTA, M. A stochastic model for the daily coordination of pumped storage hydro plants and wind power plants. Ann Oper Res. 193, 91, 2012.
  • 11. CATALÄO J.P.S., POUSINHO H.M.I., MENDES V.M.F. Hydro energy systems management in Portugal: Profit-based evaluation of a mixed-integer nonlinear approach. Energy. 36, 500, 2011.
  • 12. DING X., LEE, W.J., JIANXUE, W. AND LIU L. Studies on stochastic unit commitment formulation with flexible generating units. Electr. Power. Syst. Res. 80, 130, 2009.
  • 13. DENG Q., JIANG X., CUI Q., ZHANG L. Strategic design of cost savings guarantee in energy performance contracting under uncertainty. Applied Energy, 139, 68, 2015.
  • 14. HAN J.H., AHN Y.C., LEE I.B. A multi-objective optimization model for sustainable electricity generation and CO2 mitigation (EGCM) infrastructure design considering economic profit and financial risk. Applied Energy. 95, 186, 2012.
  • 15. DALE L., MILBORROW D., SLARK R., STRBAC G. Total cost estimates for large-scale wind scenarios in UK. Energy Policy. 32 (17), 1949, 2004.
  • 16. DALTON G.J., ALCORN R., LEWIS, T. A 10 year installation program for wave energy in Ireland: A case study sensitivity analysis on financial returns. Renewable Energy. 40, 80, 2012.
  • 17. O'CONNOR M., LEWIS T., DALTON G. Operational expenditure costs for wave energy projects and impacts on financial returns. Renewable Energy. 50, 1119, 2013.
  • 18. AGGARWAL S.K., SAINI L.M., KUMAR A. Electricity price forecasting in deregulated markets: A review and evaluation. Electrical Power and Energy Systems. 31, 13, 2009.
  • 19. BUNN D.W. Forecasting loads and prices in competitive power markets. Proc IEEE. 88 (2), 163, 2000.
  • 20. KANAMURA T., ÖHASHI K. A structural model for electricity prices with spikes: Measurement of spike risk and optimal policies for hydropower plant operation. Energy Economics. 29, 1010, 2007.
  • 21. THOMPSON M., DAVIDSON M., RASMUSSEN H. Valuation and optimal operation of electrical power plants in deregulated markets. Operations Research. 52, 546, 2004.
  • 22. BUCKINGHAM E. On Physically Similar Systems; Illustrations of the Use of Dimensional Equations. Phys. Rev. 4 (4), 345, 1914.
  • 23. HUNTLEY H.E. Dimensional Analysis. Dover Publications, New York, 1967.
  • 24. VIGNAUX G.A. Dimensional Analysis in Operations Research. N. Z. Oper. Res. 14 (1), 81, 1986.
  • 25. ČARNOGURSKÁ M. Dimensional Analysis and Theory of Similarity and Modelling in Practise, TU, Kosice (in Slovak), 1998.
  • 26. ČARNOGURSKÁ M. Basics for Mathematical and Physical Modelling in Fluid Mechanics and Thermomechanics, Vienala, Košice (in Slovak), 2000.
  • 27. ČARNOGURSKÁ M., PŘÍHODA M. Application of Dimensional Analysis for Modeling Phenomena in the Field of Energy, Vienala, Košice (in Slovak), 2011.
  • 28. ČARNOGURSKÁ M., PŘÍHODA M., KOSKO M., PYSZKO R. Verification of pollutant creation model at dendromass combustion. J. Mech. Sci. Technol. 26 (12), 4161, 2012.
  • 29. LIN J.H., HUANG C.Y., SU C.C. Dimensional Analysis for the Heat Transfer Characteristics in the Corrugated Channels of Plate Heat Exchangers. Int. Commun. Heat Mass Transfer. 34, 304, 2007.
  • 30. DEMIR V., YURDEM H., DEGIRMENCIOGLU A. Development of Prediction Models for Friction Losses in Drip Irrigation Laterals Equipped with Integrated in-Line and on-Line Emitters Using Dimensional Analysis. Biosyst. Eng. 96 (4), 617, 2007.
  • 31. YURDEM H., DEMIR V., DEGIRMENCIOGLU A. Development of a Mathematical Model to Predict Head Losses in Hydrocyclone Filters in Drip Irrigation Systems Using Dimensional Analysis. Biosyst. Eng. 102, 1, 2010.
  • 32. FRIES N., DREYER M. Dimensionless Scaling Methods for Capillary Rise. J. Colloid Interface Sci., 338, 514, 2009.
  • 33. VILČEKOVÁ S., ŠENITKOVÁ, I. Modeling the Occurrence of Nitrogen Oxides Indoors. Indoor Built Environ. 18, 138, 2009.
  • 34. ZELEŇÁKOVÁ M., ČARNOGURSKÁ M. Prediction of Pollutants Concentration in Water Stream. Trans. Univ. Kosice Res. Rep. Univ. Kosice. 2, 44, 2008.
  • 35. ZELEŇÁKOVÁ M., ČARNOGURSKÁ M. A dimensional analysis-based model for the prediction of nitrogen concentrations in Laborec River, Slovakia. Water Environ. J. 27, 284, 2013.
  • 36. ZELEŇÁKOVÁ M., ČARNOGURSKÁ M., ŠLEZINGR M., SLYŠ D., PURCZ P. A model based on dimensional analysis for prediction of nitrogen and phosphorus concentrations at the river station Ižkovce, Slovakia. Hydrol. Earth Syst. Sci. 17 (1), 201, 2013.
  • 37. ABAFFY D., LUKÁČ M., LIŠKA, M. Dams in Slovakia. T.R.T. Medium Bratislava, 1995.
Typ dokumentu
Identyfikator YADDA
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.