PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
2016 | 25 | 4 |
Tytuł artykułu

How red mud-induced enhancement of iron plaque formation reduces cadmium accumulation in rice with different radial oxygen loss

Warianty tytułu
Języki publikacji
EN
Abstrakty
EN
In situ stabilization of cadmium (Cd) in soil by the addition of Fe-rich amendments (e.g., red mud or RM) has been suggested as an effective and low-cost method. A combined soil-sand pot experiment was conducted to investigate the influence of the addition of RM on iron plaque formation and Cd accumulation in rice plants. Two experiments were conducted: 1. A hydroponic trial with 20 cultivars for screening the rice cultivars with different radial oxygen loss (ROL). 2. A rhizobag trial using the three selected rice cultivars (Zheyou12, Qianyou 1, Chunjiangnuo 2) with different ROL at 2 and 5 mg Cd kg-1 exposures amended by three rates of RM application (0, 0.5%, 1%). The results indicated that the three rice cultivars with different ROLs on average showed better growth performance, less Cd uptake, and more iron (Fe) plaque on root surface and in the rhizosphere under RM treatments. In addition, the rice cultivar with higher ROL tended to have higher Fe plaque and Cd adsorption on the roots and in their rhizosphere with increasing RM additions. These results suggested that rice plants (especially high ROL-ability cultivars) amended by Fe-rich amendments tend to possess a high ability to increase Fe plaque on root surface and in the rhizosphere, as well as decrease Cd uptake and translocate from root to grain.
Słowa kluczowe
EN
Wydawca
-
Rocznik
Tom
25
Numer
4
Opis fizyczny
p.1603-1613,fig.,ref.
Twórcy
autor
  • School of Life Sciences, South China Normal University, Guangzhou 510631, China
autor
  • Center for Environmental Remediation, Institute of Geographical Sciences and Natural Resources Research, Chinese Academy of Sciences, Beijing 100101, China
autor
  • Center for Environmental Remediation, Institute of Geographical Sciences and Natural Resources Research, Chinese Academy of Sciences, Beijing 100101, China
autor
  • School of Environmental Science and Engineering, Sun Yat-Sen University, Guangzhou 510275, China
autor
  • The Beijing Key Laboratory of New Technology in Agricultural Application, Department of Agricultural Resource and Environment, Beijing University of Agriculture, Beijing 100206, China
autor
  • College of Resource Environment and Tourism, Capital Normal University, Beijing 100048, P. R. China
autor
  • Biotechnology and Germplasm Resources Institute, Yunnan Academy of Agricultural Sciences, Kunming, China
Bibliografia
  • 1. McLaughlin M.J., Parker D.R., Clarke J.M. Metals and micronutrients-food safe issues. Field Crop Res. 60, 143, 1999.
  • 2. Satarug S., Baker J.R., Urbenjapol S., Haswell -Elkins M., Reilly P.E.B., Williams D.J. A global perspective on cadmium pollution and toxicity in non-occupationally exposed population. Toxicol. Lett. 137, 65, 2003.
  • 3. Hooda P.S. Trace Elements in Soil. Chippenham: John Wiley and sons. 2010.
  • 4. Zhuang P., Zou B., Li N.Y., Li Z.A. Heavy metal contamination in soils and food crops around Dabaoshan Mine in Guangdong, China: implication for human health. Environ. Geochem. Health. 31, 707, 2009.
  • 5. Wang M.Y., Chen A.K., Wong M.H., Qiu R.L., Cheng H., Ye Z.H. Cadmium accumulation in and tolerance of rice (Oryza sativa L.) varieties with different rates of radial oxygen loss. Environ. Pollut. 159, 1730, 2011.
  • 6. Cheng H., Wang M.Y., Wong M.H., Ye Z.H. Does radial oxygen loss and iron plaque formation on roots alter Cd and Pb uptake and distribution? Plant Soil. 375, 137, 2014.
  • 7. Crowder A.A., St-Cyr L. Iron oxide plaque on wetland roots. Trends Soil Sci. 1, 315, 1991.
  • 8. Chen Z., Zhu Y.G., Liu W.J., Meharg A.A. Direct evidence showing the effect of root surface iron plaque on arsenite and arsenate uptake into rice (Oryza sativa) roots. New Phytol. 165, 91, 2005.
  • 9. Mei X.Q., Ye Z.H., Wong M.H. The relationship of root porosity and radial oxygen loss on arsenic tolerance and uptake in rice grains and straw. Environ. Pollut. 157, 2550, 2009.
  • 10. Mei X.Q., Wong M.H., Yang Y., Dong H.Y., Qiu R.L., Ye Z.H. The effects of radial oxygen loss on arsenic tolerance and uptake in rice and on its rhizosphere. Environ Pollut 165, 109, 2012.
  • 11. Mendellsohn I.A., Kleiss B.A., Wakeley J.S. Factors controlling the formation of oxidized root channels – a review. Wetlands. 15, 37, 1995.
  • 12. Armstrong W. The oxidising activity of roots in waterlogged soils. Physiol. Plant. 27, 920, 1967.
  • 13. Taylor G.J., Crowder A.A. Use of DCB technique for extraction of hydrous iron oxides from roots of wetland plants. Am. J. Bot. 70, 1254, 1983.
  • 14. Otte M.L., Rozema J., Koster L., Haarsma M.S., Broekman R.A. Iron plaque on roots of Aster tripolium L., interaction with zinc uptake. New Phytol. 111, 309, 1989
  • 15. Zhang X.K., Zhang F.S., Mao D.R. Effect of Fe plaque outside roots on nutrient uptake by rice (Oryza sativa L.): zinc uptake. Plant Soil. 202, 33, 1998.
  • 16. Liu W.J., Zhu Y.G., Smith F.A., Smith S.E. Do phosphorus nutrition and iron plaque alter arsenate (As) uptake by rice seedlings in hydroponic culture? New Phytol. 162, 481, 2004.
  • 17. Hu Z.Y., Zhu Y.G., Li M., Zhang L.G., Cao Z.H., Smith F.A. Sulfur (S)-induced enhancement of iron plaque formation in the rhizosphere reduces arsenic accumulation in rice (Oryza sativa L.) seedlings. Environ. Pollut. 147, 387, 2007.
  • 18. Liu J.G., Leng X.M., Wang M.X., Zhu Z.Q., Dai Q.H., Iron plaque formation on roots of different rice cultivars and the relation with lead uptake. Ecotox. Environ. Safe. 74, 1304, 2013.
  • 19. Castaldi P., Santona L., Melis P. Heavy metals immobilization by chemical amendments in a polluted soil and influence on white lupin growth. Chemosphere. 60, 365, 2005.
  • 20. Castaldi P., Melis P., Silvetti M., Deiana P., Garau G. Influence of pea and wheat growth on Pb, Cd, and Zn mobility and soil biological status in a polluted amended soil. Geoderma. 151, 241, 2009.
  • 21. Tandy S., Healey J.R., Nason M.A., Williamson J.C., Jones D.L. Remediation of metal polluted mine soil with compost: co-composting versus incorporation. Environ. Pollut. 157, 690, 2009.
  • 22. Liu Y.J., Naidu R., Ming H. Red mud as an amendment for pollutants in solid and liquid phases. Geoderma. 163, 1, 2011.
  • 23. Lombi E., Zhao F.J., Wieshammer G., Zhang G., McGrath S.P. In situ fixation of metals in soils using bauxite residue: biological effects. Environ. Pollut. 118, 445, 2002a.
  • 24. Lombi E., Zhao F.J., Zhang G.Y., Sun B., Fitz W., Zhang H., McGrath S.P. In situ fixation of metals in soils using bauxite residue: chemical assessment. Environ. Pollu. 118, 135, 2002b.
  • 25. Friesl W., Lombi E., Horak O., Wenzel W. Immobilization of heavy metals in soils using inorganic amendments in a greenhouse study. J. Plant Nutr. Soil Sci. 166, 191, 2003.
  • 26. Yang J.X., Wang L., Li J.M., Wei D.P., Chen S.B. Effects of rape straw and red mud on extractability and bioavailabiltiy of cadmium in a calcareous soil. Front. Env. Sci. Eng. 9, 419, 2015.
  • 27. Friesl W., Friedl J., Platzer K., Horak O., Gerzabek M.H., Remediation of contaminated agricultural soils near a former Pb/Zn smelter in Austria: Batch, pot and field experiments. Environ. Pollut. 144, 40, 2006.
  • 28. Friesl W., Platzer K., Horak O., Gerzabek M.H. Immobilising of Cd, Pb, and Zn contaminated arable soils close to a former Pb/Zn smelter: a field study in Austria over 5 years. Environ. Geochem. Helth. 31, 581, 2009.
  • 29. Li B., Yang J.X., Wei D.P., Chen S.B., Li J.M., Ma Y.B. Field evidence of cadmium phytoavailability decreased effectively by rape straw and/or red mud with zinc sulphate in a Cd-contaminated calcareous soil. PLOS ONE. 9, e109967, 2014.
  • 30. Liu Z.B., Ji X.H., Wang G.X., Peng H., Tian F.X., Shi L.H., Effects of red-mud on rice growth and cadmium uptake in cadmium polluted soil. J. Agro-Environ. Sci. 29, 692, 2010 [in Chinese].
  • 31. Fan M.R., Luo L., Liao Y.L., Wei J.H., Tian J., Hu B. Effects of red mud application on rice growth and transformation of cadmium forms in Cd-contaminated paddy soils. Plant Nutr. Fert. Sci. 18, 390, 2012 [in Chinese].
  • 32. Hoagland D.R., Arnon D.I. The Water Culture Method for Growing Plants without Soil. Cal. Agr. Exp. Sta. 15, 221, 1938.
  • 33. Yang J.X., Tam N.F.Y., Ye Z.H. Root porosity, radial oxygen loss and iron plaque on roots of wetland plants in relation to zinc tolerance and accumulation. Plant Soil. 374, 815, 2014.
  • 34. Kirk P.L. Kjeldahl method for total nitrogen. Anal. Chem. 22, 354, 1950.
  • 35. Allen S.E., Chemical Analysis of Ecological Materials, seconded. Blackwell Scientific Publications, Oxford. 1989.
  • 36. Lindsay W.L., Norvell W.A. Development of a DTPA soil test for zinc, iron,manganese, and copper. Soil Sci. Soc. Am. J. 42, 421, 1978.
  • 37. Alexander P.D., Alloway B.J., Dourado A.M. Genotypic variations in the accumulation of Cd, Cu, Pb and Zn exhibited by six common grown vegetables. Environ. Pollut. 144, 736, 2006.
  • 38. Hansel C.M., Force M.J., Fendorf S., Sutton S. Spatial and temporal association of As and Fe species on aquatic plant roots. Environ. Sci. Technol. 36, 1988, 2002.
  • 39. Yang J.X., Guo Q.J., Yang J., Zhou X.Y., Ren H.Y., Zhang H.Z., Xu R.X., Wang X.D., Peters M., Zhu G.X., Wei R.F., Tian L.Y., Han H.K. Red mud (RM)- Induced enhancement of iron plaque formation reduces arsenic and metal accumulation in two wetland plant species. Int. J. Phytoremediat. 18 (3), 269, 2016.
  • 40. Bravin M.N., Travassac F., Le F.M., Hinsinger P., Garnie J.M. Oxygen input controls the spatial and temporal dynamics of arsenic at the surface of a flooded paddy soil and in the rhizosphere of lowland rice (Oryza sativa L.): a microcosm study. Plant Soil. 312, 207, 2008
Typ dokumentu
Bibliografia
Identyfikatory
Identyfikator YADDA
bwmeta1.element.agro-4b1df69f-4a68-4aa7-84c5-c983d1b9f257
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.