PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
2017 | 77 | 3 |
Tytuł artykułu

In vivo stimulation of locus coeruleus: effects on amygdala subnuclei

Warianty tytułu
Języki publikacji
EN
Abstrakty
EN
The locus coeruleus (LC) is the major noradrenergic nucleus and sends projections to almost all brain areas. A marked increase in norepinephrine release has been demonstrated in several brain areas in response to exposure to acute stressful stimuli, especially those innervated by LC projections. One of the brain areas innervated by LC neurons is the amygdala, a structure highly involved in emotional processes and memory formation. The aim of this study was to increase knowledge of the functional connectivity between the LC and the amygdala subnuclei. To reach this objective, we evaluated c‑fos immunoreactive cells in amygdala nuclei following direct electrical stimulation of the LC in conscious animals. This analysis of c‑fos immunoreactivity could inform whether there are differences in activity of the amygdala subnuclei related to LC electrical stimulation in conscious animals. Our results showed a marked increase in c‑fos activity in these amygdala subnuclei both ipsilateral and contralateral to LC electrical stimulation in vivo. Therefore, our study provides evidence that in vivo electrical stimulation of LC is able to activate the amygdala subnuclei as measured by c‑fos expression.
Słowa kluczowe
Wydawca
-
Rocznik
Tom
77
Numer
3
Opis fizyczny
p.261-268,fig.,ref.
Twórcy
  • Departamento de Psicología, Universidad de Almería, Ctra. Sacramento s/n, Almeria, Spain
autor
  • Departamento de Psicología, Universidad de Almería, Ctra. Sacramento s/n, Almeria, Spain
autor
  • Centro de Investigaciones Biomedicas, Universidad Autonoma de Chile. Llano Subercaseaux, Santiago de Chile, Chile
autor
  • Departamento de Enfermería, Fisioterapia y Medicina, Universidad de Almería, Ctra. Sacramento s/n, Almeria, Spain
Bibliografia
  • Aston‑Jones G, Waterhouse B (2016) Locus coeruleus: From global projection system to adaptive regulation of behavior. Brain Res 1645: 75–78.
  • Berridge CW (2005) The locus coeruleus‑noradrenergic system and stress: modulation of arousal state and state‑dependent behavioral processes. In: Handbook of Stress and the Brain (Steckler T, Kalim NH, Reul JM, Eds.). Elsevier, Amsterdam, Netherlands, p. 437–464.
  • Bush DEA, Caparosa EM, Gekker A, LeDoux J (2010) Beta‑adrenergic receptors in the lateral nucleus of the amygdala contribute to the acquisition but not the consolidation of auditory fear conditioning. Front Behav Neurosci 4: 154.
  • Carvajal F, López‑Grancha  M, Navarro  M, Sánchez‑Amate Mdel  C, Cubero I (2007) Long‑lasting reductions of ethanol drinking, enhanced ethanol‑induced sedation, and decreased c‑fos expression in the Edinger‑Westphal nucleus in Wistar rats exposed to the organophosphate chlorpyrifos. Toxicol Sci 96: 310–320.
  • Chen FJ, Sara SJ (2007) Locus coeruleus activation by foot shock or electrical stimulation inhibits amygdala neurons. Neurosci 144: 472–481.
  • Clewett D, Schoeke A, Mather M (2014) Locus coeruleus neuromodulation of memories encoded during negative or unexpected action outcomes. Neurobiol Learn Mem 111: 65–70.
  • Counts SE, Mufson EJ (2012) Locus Coeruleus. In: The Human Nervous System, Third Edition (Mai JK, Paxinos G, Eds.). Elsevier, Amsterdam, The Netherlandas, p. 425–438.
  • Dębiec J, Bush DEA, LeDoux JE (2011) Noradrenergic enhancement of reconsolidation in the amygdala impairs extinction of conditioned fear in rats – a possible mechanism for the persistence of traumatic memories in PTSD. Depress Anxiety 28: 186–193.
  • Duvarci S, Pare D (2014) Amygdala microcircuits controlling learned fear. Neuron 82: 966–980.
  • Ehrlich I, Humeau Y, Grenier F, Ciocchi S, Herry C, Lüthi A (2009) Amygdala inhibitory circuits and the control of fear memory. Neuron 62: 757–771.
  • Eschenko O, Evrard HC, Neves RM, Beyerlein M, Murayama Y, Logothetis NK (2012) Tracing of noradrenergic projections using manganese‑enhanced MRI. NeuroImage 59: 3252–3265.
  • Fast CD, McGann JP (2017) Amygdalar gating of early sensory processing through interactions with locus coeruleus. J  Neurosci 37: 3085–3101.
  • Ferry B, Roozendaal B, McGaugh JL (1999) Basolateral amygdala noradrenergic influences on memory storage are mediated by an interaction between beta‑ and alpha1‑adrenoceptors. J  Neurosci 19: 5119–5123.
  • Johansen JP, Diaz‑Mataix  L, Hamanaka H, Ozawa T, Ycu E, Koivumaa J, Kumar A, Hou M, Deisseroth K, Boyden, ES, LeDoux JE (2014) Hebbian and neuromodulatory mechanisms interact to trigger associative memory formation. Proc Natl Acad Sci USA 111: E5584–5592.
  • Johnson LR, Hou M, Prager EM, LeDoux JE (2011) Regulation of the Fear Network by Mediators of Stress: Norepinephrine Alters the Balance between Cortical and Subcortical Afferent Excitation of the Lateral Amygdala. Front Behav Neurosci 5: 23.
  • Jolkkonen E, Pitkänen A (1998) Intrinsic connections of the rat amygdaloid complex: projections originating in the central nucleus. J Comp Neurol 395: 53–72.
  • Lanuza E, Moncho‑Bogani J, LeDoux JE (2008) Unconditioned stimulus pathways to the amygdala: effects of lesions of the posterior intralaminar thalamus on foot‑shock‑induced c‑Fos expression in the subdivisions of the lateral amygdala. Neuroscience 155: 959–968.
  • Lazzaro SC, Hou  M, Cunha C, LeDoux JE, Cain CK (2010) Antagonism of lateral amygdala alpha1‑adrenergic receptors facilitates fear conditioning and long‑term potentiation. Learn Mem 17: 489–493. LeDoux J (2000) Emotion Circuits in the Brain. Annu Rev Neurosci 23: 155–184.
  • LeDoux J (2012) Rethinking the emotional brain. Neuron 73: 653–676.
  • Lee S, Kim SJ, Kwon OB, Lee JH, Kim JH (2013) Inhibitory networks of the amygdala for emotional memory. Front Neural Circuits 7: 129.
  • Martinez RCR, Gupta N, Lázaro‑Muñoz G, Sears RM, Kim S, Moscarello JM, LeDoux JE, Cain CK (2013) Active vs. reactive threat responding is associated with differential c‑Fos expression in specific regions of amygdala and prefrontal cortex. Learn Mem 20: 446–452.
  • McCall JG, Al‑Hasani R, Siuda ER, Hong DY, Norris AJ, Ford CP, Bruchas MR (2015) CRH Engagement of the Locus Coeruleus Noradrenergic System Mediates Stress‑Induced Anxiety. Neuron 87: 605–620.
  • Passerin AM, Cano G, Rabin BS, Delano BA, Napier JL, Sved AF (2000) Role of locus coeruleus in foot shock‑evoked Fos expression in rat brain. Neurosci 101: 1071–1082.
  • Paxinos G, Watson C (1998) The rat brain in stereotaxic coordenates. Academic Press, New York. Pitkänen A, Savander V, LeDoux JE (1997) Organization of intra‑amygdaloid circuitries in the rat: an emerging framework for understanding functions of the amygdala. Trends Neurosci 20: 517–523.
  • Retson TA, Van Bockstaele EJ (2013) Coordinate regulation of noradrenergic and serotonergic brain regions by amygdalar neurons. J Chem Neuroanat 52: 9–19.
  • Reyes BAS, Carvalho AF, Vakharia K, Van Bockstaele EJ (2011) Amygdalar peptidergic circuits regulating noradrenergic locus coeruleus neurons: linking limbic and arousal centers. Exp Neurol 230: 96–105.
  • Romanski LM, Clugnet MC, Bordi F, LeDoux JE (1993) Somatosensory and auditory convergence in the lateral nucleus of the amygdala. Behav Neurosci 107: 444–450.
  • Sah P, Faber ESL, Lopez De Armentia M, Power J (2003) The amygdaloid complex: anatomy and physiology. Physiol Rev 83: 803–834.
  • Samuels E, Szabadi E (2008) Functional Neuroanatomy of the Noradrenergic Locus Coeruleus: Its Roles in the Regulation of Arousal and Autonomic Function Part I: Principles of Functional Organisation. Curr Neuropharmacol 6: 235–253.
  • Sara SJ (2009) The locus coeruleus and noradrenergic modulation of cognition. Nat Rev Neurosci 10: 211–223.
  • Schiff HC, Johansen JP, Hou M, Bush DEA, Smith EK, Klein JE, LeDoux JE, Sears RM (2017) β‑Adrenergic Receptors Regulate the Acquisition and Consolidation Phases of Aversive Memory Formation Through Distinct, Temporally Regulated Signaling Pathways. Neuropsychopharmacology 42: 895–903.
  • Sears RM, Fink AE, Wigestrand MB, Farb CR, de Lecea L, LeDoux JE (2013) Orexin/hypocretin system modulates amygdala‑dependent threat learning through the locus coeruleus. Proc Nat Acad Sci USA 110: 20260–20265.
  • Simpson KL, Altman DW, Wang  L, Kirifides ML, Lin RC, Waterhouse BD (1997) Lateralization and functional organization of the locus coeruleus projection to the trigeminal somatosensory pathway in rat. J  Comp Neurol 385: 135–147.
  • Sterpenich  V, D’Argembeau A, Desseilles  M, Balteau E, Albouy G, Vandewalle  G, Dequeldre C, Luxen A, Collete F, Maquet P (2006) The locus ceruleus is involved in the successful retrieval of emotional memories in humans. J Neurosci 26: 7416–7423.
  • Stoppel C, Albrecht A, Pape HC, Stork O (2006) Genes and neurons: molecular insights to fear and anxiety. Genes Brain Behav 5: 34–47.
  • Tanaka M, Yoshida M, Emoto H, Ishii H (2000) Noradrenaline systems in the hypothalamus, amygdala and locus coeruleus are involved in the provocation of anxiety: basic studies. Eur J Pharmacol 405: 397–406.
  • Van Bockstaele EJ, Colago EE, Valentino RJ (1998) Amygdaloid corticotropin‑releasing factor targets locus coeruleus dendrites: substrate for the co‑ordination of emotional and cognitive limbs of the stress response. J Neuroendocrinol 10: 743–757.
  • Van Bockstaele EJ, Peoples J, Valentino RJ (1999) A.E. Bennett Research Award. Anatomic basis for differential regulation of the rostrolateral peri‑locus coeruleus region by limbic afferents. Biol Psychiatry 46: 1352–1363.
  • Veening JG, Swanson LW, Sawchenko PE (1984) The organization of projections from the central nucleus of the amygdala to brainstem sites involved in central autonomic regulation: a combined retrograde transport‑immunohistochemical study. Brain Res 303: 337–357.
Typ dokumentu
Bibliografia
Identyfikatory
Identyfikator YADDA
bwmeta1.element.agro-4b0d1f04-6555-47e9-a120-b43a65185cd8
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.