Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
2014 | 83 | 4 |
Tytuł artykułu

Evolution of the cell wall components during terrestrialization

Treść / Zawartość
Warianty tytułu
Języki publikacji
Colonization of terrestrial ecosystems by the first land plants, and their subsequent expansion and diversification, were crucial for the life on the Earth. However, our understanding of these processes is still relatively poor. Recent intensification of studies on various plant organisms have identified the plant cell walls are those structures, which played a key role in adaptive processes during the evolution of land plants. Cell wall as a structure protecting protoplasts and showing a high structural plasticity was one of the primary subjects to changes, giving plants the new properties and capabilities, which undoubtedly contributed to the evolutionary success of land plants. In this paper, the current state of knowledge about some main components of the cell walls (cellulose, hemicelluloses, pectins and lignins) and their evolutionary alterations, as preadaptive features for the land colonization and the plant taxa diversification, is summarized. Some aspects related to the biosynthesis and modification of the cell wall components, with particular emphasis on the mechanism of transglycosylation, are also discussed. In addition, new surprising discoveries related to the composition of various cell walls, which change how we perceive their evolution, are presented, such as the presence of lignin in red algae or MLG (1→3),(1→4)-β-D-glucan in horsetails. Currently, several new and promising projects, regarding the cell wall, have started, deciphering its structure, composition and metabolism in the evolutionary context. That additional information will allow us to better understand the processes leading to the terrestrialization and the evolution of extant land plants.
Opis fizyczny
  • Department of Developmental Plant Biology, Institute of Experimental Biology, University of Wroclaw, Kanonia 6/8, 50-328 Wroclaw, Poland
  • 1. Becker B, Marin B. Streptophyte algae and the origin of embryophytes. Ann Bot. 2009;103(7):999–1004.
  • 2. Sørensen I, Pettolino FA, Bacic A, Ralph J, Lu F, O’Neill MA, et al. The charophycean green algae provide insights into the earlyorigins of plant cell walls. Plant J. 2011;68(2):201–211.
  • 3. Rubinstein CV, Gerrienne P, de la Puente GS, Astini RA, Steemans P. Early Middle Ordovician evidence for land plants in Argentina (eastern Gondwana). New Phytol. 2010;188(2):365–369.
  • 4. Sanderson MJ, Thorne JL, Wikstrom N, Bremer K. Molecular evidence on plant divergence times. Am J Bot. 2004;91(10):1656–1665.
  • 5. Wodniok S, Brinkmann H, Glöckner G, Heidel AJ, Philippe H, Melkonian M, et al. Origin of land plants: do conjugating greenalgae hold the key? BMC Evol Biol. 2011;11(1):104.
  • 6. Karol KG, McCourt RM, Cimino MT, Delwiche CF. The closest living relatives of land plants. Science. 2001;294(5550):2351–2353. http://
  • 7. McCourt RM, Delwiche CF, Karol KG. Charophyte algae and land plant origins. Trends Ecol Evol. 2004;19(12):661–666.
  • 8. Kenrick P, Crane PR. The origin and early evolution of plants on land. Nature. 1997;389(6646):33–39.
  • 9. Niklas KJ, Kutschera U. The evolution of the land plant life cycle. New Phytol. 2010;185(1):27–41.
  • 10. Domozych DS, Ciancia M, Fangel JU, Mikkelsen MD, Ulvskov P, Willats WGT. The cell walls of green algae: a journey through evolutionand diversity. Front Plant Sci. 2012;3:82.
  • 11. Sørensen I, Domozych D, Willats WGT. How have plant cell walls evolved? Plant Physiol. 2010;153(2):366–372.
  • 12. Popper ZA, Michel G, Hervé C, Domozych DS, Willats WGT, Tuohy MG, et al. Evolution and diversity of plant cell walls: from algae to flowering plants. Annu Rev Plant Biol. 2011;62(1):567–590. http://
  • 13. Bacic A, Harris PJ, Stone BA. Structure and function of plant cell walls. In: Preiss J, editor. The biochemistry of plants. New York, NY:Academic Press; 1988. p. 297–371. (vol 14).
  • 14. O’Neill M, Albersheim P, Darvill A. The pectic polysaccharides of primary cell wall. In: Dey PM, editor. Methods in plant biochemistry.London: Academic Press; 1990. p. 415–441. (vol 2).
  • 15. Carpita NC, Gibeaut DM. Structural models of primary cell walls in flowering plants: consistency of molecular structure with the physicalproperties of the walls during growth. Plant J. 1993;3(1):1–30.
  • 16. Ridley BL, O’Neill MA, Mohnen D. Pectins: structure, biosynthesis, and oligogalacturonide-related signaling. Phytochemistry. 2001;57(6):929–967.
  • 17. Niklas KJ. The cell walls that bind the tree of life. Bi o s c i e n c e . 2 0 0 4 ; 5 4 ( 9 ) : 8 3 1 – 8 4 1 . ht t p : / / d x . d o i .org/10.1641/0006-3568(2004)054[0831:TCWTBT]2.0.CO;2
  • 18. Adl SM, Simpson AGB, Farmer MA, Andersen RA, Anderson OR, Barta JR, et al. The new higher level classification of eukaryotes with emphasison the taxonomy of protists. J Eukaryot Microbiol. 2005;52(5):399–451.
  • 19. Bhattacharya D, Yoon HS, Hackett JD. Photosynthetic eukaryotes unite: endosymbiosis connects the dots. Bioessays. 2004;26(1):50–60.
  • 20. Palmer JD, Soltis DE, Chase MW. The plant tree of life: an overview and some points of view. Am J Bot. 2004;91(10):1437–1445.
  • 21. Baldauf SL. An overview of the phylogeny and diversity of eukaryotes. J Syst Evol. 2008;46(3):263–273.
  • 22. Popper ZA, Tuohy MG. Beyond the green: understanding the evolutionary puzzle of plant and algal cell walls. Plant Physiol.2010;153(2):373–383.
  • 23. Baldan B, Andolfo P, Navazio L, Tolomio C, Mariani P. Cellulose in algal cell wall: an “in situ” localization. Eur J Histochem.2001;45(1):51–56.
  • 24. Yin Y, Huang J, Xu Y. The cellulose synthase superfamily in fully sequenced plants and algae. BMC Plant Biol. 2009;9(1):99.
  • 25. Nobles DR Jr, Brown RM Jr. Many paths up the mountain: tracking the evolution of cellulose biosynthesis. In: Brown RM Jr, SaxenaIM, editors. Cellulose: molecular and structural biology. Dordrecht:Springer; 2007. p. 1–15.
  • 26. Yin Y, Johns MA, Cao H, Rupani M. A survey of plant and algal genomes and transcriptomes reveals new insights into the evolution and function of the cellulose synthase superfamily. BMC Genomics.2014;15(1):260.
  • 27. Carroll A, Specht CD. Understanding plant cellulose synthases through a comprehensive investigation of the cellulose synthasefamily sequences. Front Plant Sci. 2011;2:5.
  • 28. Newman RH, Hill SJ, Harris PJ. Wide-angle x-ray scattering and solid-state nuclear magnetic resonance data combined to test models for cellulose microfibrils in mung bean cell walls. Plant Physiol. 2013;163(4):1558–1567.
  • 29. Tsekos I. The sites of cellulose synthesis in algae: diversity and evolution of cellulose-synthesizing enzyme complexes. J Phycol. 1999;35(4):635–655.
  • 30. Nobles DR Jr, Brown RM Jr. The pivotal role of cyanobacteria in the evolution of cellulose synthases and cellulose synthaselikeproteins. Cellulose. 2004;11(3–4):437–448.
  • 31. Roberts AW, Bushoven JT. The cellulose synthase (CESA) gene superfamily of the moss Physcomitrella patens. Plant Mol Biol. 2006;63(2):207–219.
  • 32. Roberts AW, Roberts EM, Delmer DP. Cellulose synthase (CesA) genes in the green alga Mesotaenium caldariorum. Eukaryot Cell.2002;1(6):847–855.
  • 33. Lewis LA, McCourt RM. Green algae and the origin of land plants. Am J Bot. 2004;91(10):1535–1556.
  • 34. Roberts AW, Roberts EM, Haigler CH. Moss cell walls: structure and biosynthesis. Front Plant Sci. 2012;3:166.
  • 35. Wise HZ, Saxena IM, Brown RM. Isolation and characterization of the cellulose synthase genes PpCesA6 and PpCesA7 in Physcomitrellapatens. Cellulose. 2011;18(2):371–384.
  • 36. Tanaka K. Three distinct rice cellulose synthase catalytic subunit genes required for cellulose synthesis in the secondary wall. Plant Physiol. 2003;133(1):73–83.
  • 37. Djerbi S, Lindskog M, Arvestad L, Sterky F, Teeri TT. The genome sequence of black cottonwood (Populus trichocarpa) reveals 18 conservedcellulose synthase (CesA) genes. Planta. 2005;221(5):739–746.
  • 38. Nairn CJ, Haselkorn T. Three loblolly pine CesA genes expressed in developing xylem are orthologous to secondary cell wall CesA genes of angiosperms. New Phytol. 2005;166(3):907–915.
  • 39. Franková L, Fry SC. Phylogenetic variation in glycosidases and glycanases acting on plant cell wall polysaccharides, and the detection of transglycosidase and trans-β-xylanase activities. Plant J. 2011;67(4):662–681.
  • 40. Harholt J, Sørensen I, Fangel J, Roberts A, Willats WGT, Scheller HV, et al. The glycosyltransferase repertoire of the spikemoss Selaginella moellendorffii and a comparative study of its cell wall. PLoS ONE. 2012;7(5):e35846.
  • 41. van Sandt VST, Stieperaere H, Guisez Y, Verbelen JP, Vissenberg K. XET activity is found near sites of growth and cell elongation inbryophytes and some green algae: new insights into the evolutionof primary cell wall elongation. Ann Bot. 2007;99(1):39–51.
  • 42. Vogel J. Unique aspects of the grass cell wall. Curr Opin Plant Biol. 2008;11(3):301–307.
  • 43. Mellerowicz EJ, Sundberg B. Wood cell walls: biosynthesis, developmental dynamics and their implications for wood properties. CurrOpin Plant Biol. 2008;11(3):293–300.
  • 44. Nishikubo N, Takahashi J, Roos AA, Derba-Maceluch M, Piens K, Brumer H, et al. XET-mediated xyloglucan rearrangements in developing wood of hybrid aspen. Plant Physiol. 2011;155:399–413.
  • 45. Scheller HV, Ulvskov P. Hemicelluloses. Annu Rev Plant Biol. 2010;61(1):263–289.
  • 46. Popper ZA. Primary cell wall composition of bryophytes and charophytes. Ann Bot. 2003;91(1):1–12.
  • 47. Fry SC, Nesselrode BHWA, Miller JG, Mewburn BR. Mixed-linkage (1→3,1→4)-β-D-glucan is a major hemicellulose of Equisetum (horsetail)cell walls. New Phytol. 2008;179(1):104–115.
  • 48. Moller I, Sørensen I, Bernal AJ, Blaukopf C, Lee K, Øbro J, et al. High-throughput mapping of cell-wall polymers within and between plants using novel microarrays: glycan microarrays for plant cell-wall analysis. Plant J. 2007;50(6):1118–1128. http://dx.doi. org/10.1111/j.1365-313X.2007.03114.x
  • 49. Popper Z. Evolution and diversity of green plant cell walls. Curr Opin Plant Biol. 2008;11(3):286–292.
  • 50. Estevez JM, Fernandez PV, Kasulin L, Dupree P, Ciancia M. Chemical and in situ characterization of macromolecular components of the cell walls from the green seaweed Codium fragile. Glycobiology.2008;19(3):212–228.
  • 51. Schröder R, Atkinson RG, Redgwell RJ. Re-interpreting the role of endo-β-mannanases as mannan endotransglycosylase/hydrolasesin the plant cell wall. Ann Bot. 2009;104(2):197–204.
  • 52. Chanzy HD, Grosrenaud A, Vuong R, Mackie W. The crystalline polymorphism of mannan in plant cell walls and after recrystallisation.Planta. 1984;161(4):320–329.
  • 53. Mackie W, Preston RD. The occurrence of mannan microfibrils in the green algae Codium fragile and Acetabularia crenulata. Planta.1968;79(3):249–253.
  • 54. Whitney SEC, Brigham JE, Darke AH, Reid JSG, Gidley MJ. Structural aspects of the interaction of mannan-based polysaccharides withbacterial cellulose. Carbohydr Res. 1998;307(3–4):299–309.
  • 55. Hosoo Y, Imai T, Yoshida M. Diurnal differences in the supply of glucomannans and xylans to innermost surface of cell walls at variousdevelopmental stages from cambium to mature xylem in Cryptomeriajaponica. Protoplasma. 2006;229(1):11–19.
  • 56. Popper ZA, Fry SC. Primary cell wall composition of pteridophytes and spermatophytes. New Phytol. 2004;164(1):165–174.
  • 57. Domozych DS, Sorensen I, Willats WGT. The distribution of cell wall polymers during antheridium development and spermatogenesisin the Charophycean green alga, Chara corallina. Ann Bot.2009;104(6):1045–1056.
  • 58. Pena MJ, Darvill AG, Eberhard S, York WS, O’Neill MA. Moss and liverwort xyloglucans contain galacturonic acid and are structurallydistinct from the xyloglucans synthesized by hornworts and vascularplants. Glycobiology. 2008;18(11):891–904.
  • 59. Hoffman M, Jia Z, Peña MJ, Cash M, Harper A, Blackburn AR, et al. Structural analysis of xyloglucans in the primary cell walls of plantsin the subclass Asteridae. Carbohydr Res. 2005;340(11):1826–1840.
  • 60. Hsieh YSY, Harris PJ. Xyloglucans of monocotyledons have diverse structures. Mol Plant. 2009;2(5):943–965.
  • 61. Tuomivaara ST, Yaoi K, O’Neill MA, York WS. Generation and structural validation of a library of diverse xyloglucan-derived oligosaccharides,including an update on xyloglucan nomenclature. CarbohydrRes. 2015;402:56–66.
  • 62. Smith BG, Harris PJ. The polysaccharide composition of Poales cell walls. Biochem Syst Ecol. 1999;27(1):33–53. S0305-1978(98)00068-4
  • 63. Sarkar P, Bosneaga E, Auer M. Plant cell walls throughout evolution: towards a molecular understanding of their design principles. J ExpBot. 2009;60(13):3615–3635.
  • 64. Trethewey JAK, Campbell LM, Harris PJ. (1→3),(1→4)-β-D-glucans in the cell walls of the Poales (sensu lato): an immunogold labelingstudy using a monoclonal antibody. Am J Bot. 2005;92(10):1660–1674.
  • 65. Sørensen I, Pettolino FA, Wilson SM, Doblin MS, Johansen B, Bacic A, et al. Mixed-linkage (1→3),(1→4)-β-D-glucan is not unique to the Poales and is an abundant component of Equisetum arvense cell walls. Plant J. 2008;54(3):510–521.
  • 66. Bell PR. Green plants: their origin and diversity. 2nd ed. Cambridge: Cambridge University Press; 2000.
  • 67. Hodson MJ, White PJ, Mead A, Broadley MR. Phylogenetic variation in the silicon composition of plants. Ann Bot. 2005;96(6):1027–1046.
  • 68. Carafa A, Duckett JG, Knox JP, Ligrone R. Distribution of cell-wall xylans in bryophytes and tracheophytes: new insights into basalinterrelationships of land plants. New Phytol. 2005;168(1):231–240.
  • 69. York W, Oneill M. Biochemical control of xylan biosynthesis – which end is up? Curr Opin Plant Biol. 2008;11(3):258–265. http://dx.doi. org/10.1016/j.pbi.2008.02.007
  • 70. Kulkarni AR, Peña MJ, Avci U, Mazumder K, Urbanowicz BR, Pattathil S, et al. The ability of land plants to synthesize glucuronoxylans predates the evolution of tracheophytes. Glycobiology. 2012;22(3):439–451.
  • 71. Lahaye M, Robic A. Structure and functional properties of ulvan, a polysaccharide from green seaweeds. Biomacromolecules.2007;8(6):1765–1774.
  • 72. Painter TJ, Aspinall GO. Algal polysaccharides. In: The polysaccharides. New York, NY: Academic Press; 1983. p. 195–285. (vol 2).
  • 73. Turvey JR, Williams EL. The structures of some xylans from red algae. Phytochemistry. 1970;9(11):2383–2388.
  • 74. Richmond TA. The cellulose synthase superfamily. Plant Physiol. 2000;124(2):495–498.
  • 75. Keegstra K, Walton J. Plant science. Beta-glucans – brewer’s bane, dietician’s delight. Science. 2006;311(5769):1872–1873.
  • 76. Liepman AH, Wilkerson CG, Keegstra K. Expression of cellulose synthase-like (Csl) genes in insect cells reveals that CslA familymembers encode mannan synthases. Proc Natl Acad Sci USA.2005;102(6):2221–2226.
  • 77. Lerouxel O, Cavalier DM, Liepman AH, Keegstra K. Biosynthesis of plant cell wall polysaccharides – a complex process. Curr Opin Plant Biol. 2006;9(6):621–630.
  • 78. Cocuron JC, Lerouxel O, Drakakaki G, Alonso AP, Liepman AH, Keegstra K, et al. A gene from the cellulose synthase-like C familyencodes a beta-1,4 glucan synthase. Proc Natl Acad Sci USA.2007;104(20):8550–8555.
  • 79. Verhertbruggen Y, Yin L, Oikawa A, Scheller HV. Mannan synthase activity in the CSLD family. Plant Signal Behav. 2011;6(10):1620–1623.
  • 80. Yin L, Verhertbruggen Y, Oikawa A, Manisseri C, Knierim B, Prak L, et al. The cooperative activities of CSLD2, CSLD3, and CSLD5are required for normal Arabidopsis development. Mol Plant.2011;4(6):1024–1037.
  • 81. Burton RA, Wilson SM, Hrmova M, Harvey AJ, Shirley NJ, Medhurst A, et al. Cellulose synthase-like CslF genes mediate the synthesis ofcell wall (1,3;1,4)-β-D-glucans. Science. 2006;311(5769):1940–1942.
  • 82. Buschiazzo E, Ritland C, Bohlmann J, Ritland K. Slow but not low: genomic comparisons reveal slower evolutionary rate and higher dN/dS in conifers compared to angiosperms. BMC Evol Biol. 2012;12(1):8.
  • 83. Burton RA, Jobling SA, Harvey AJ, Shirley NJ, Mather DE, Bacic A, et al. The genetics and transcriptional profiles of the cellulose synthaselike HvCslF gene family in barley (Hordeum vulgare L.). Plant Physiol.2008;146(4):1821–1833.
  • 84. Doblin MS, Pettolino FA, Wilson SM, Campbell R, Burton RA, Fincher GB, et al. A barley cellulose synthase-like CSLH gene mediates(1,3;1,4)-β-D-glucan synthesis in transgenic Arabidopsis. Proc NatlAcad Sci USA. 2009;106(14):5996–6001.
  • 85. Burton RA, Fincher GB. (1,3;1,4)-β-D-glucans in cell walls of the Poaceae, lower plants, and fungi: a tale of two linkages. Mol Plant.2009;2(5):873–882.
  • 86. Fincher GB. Exploring the evolution of (1,3;1,4)-β-D-glucans in plant cell walls: comparative genomics can help! Curr Opin PlantBiol. 2009;12(2):140–147.
  • 87. Zhou HL, He SJ, Cao YR, Chen T, Du BX, Chu CC, et al. OsGLU1, a putative membrane-bound endo-1,4-β-D-glucanase from rice, affectsplant internode elongation. Plant Mol Biol. 2006;60(1):137–151.
  • 88. Ren Y, Hansen SF, Ebert B, Lau J, Scheller HV. Site-directed mutagenesis of IRX9, IRX9L and IRX14 proteins involved in xylan biosynthesis: glycosyltransferase activity is not required for IRX9 function in Arabidopsis. PLoS ONE. 2014;9(8):e105014. http://dx.doi. org/10.1371/journal.pone.0105014
  • 89. Jensen JK, Johnson NR, Wilkerson CG. Arabidopsis thaliana IRX10 and two related proteins from psyllium and Physcomitrella patens arexylan xylosyltransferases. Plant J. 2014;80(2):207–215.
  • 90. Urbanowicz BR, Peña MJ, Moniz HA, Moremen KW, York WS. Two Arabidopsis proteins synthesize acetylated xylan in vitro. Plant J. 2014;80(2):197–206.
  • 91. Cantarel BL, Coutinho PM, Rancurel C, Bernard T, Lombard V, Henrissat B. The carbohydrate-active enzymes database (CAZy): an expert resource for glycogenomics. Nucl Acids Res. 2009;37(database):D233–D238.
  • 92. Yuan JS, Yang X, Lai J, Lin H, Cheng ZM, Nonogaki H, et al. The endo-β-mannanase gene families in Arabidopsis, rice, and poplar.Funct Integr Genomics. 2006;7(1):1–16.
  • 93. Brown DM, Goubet F, Wong VW, Goodacre R, Stephens E, Dupree P, et al. Comparison of five xylan synthesis mutants reveals new insight into the mechanisms of xylan synthesis. Plant J. 2007;52(6):1154–1168.
  • 94. Lee C, Zhong R, Richardson EA, Himmelsbach DS, McPhail BT, Ye ZH. The PARVUS gene is expressed in cells undergoing secondarywall thickening and is essential for glucuronoxylan biosynthesis.Plant Cell Physiol. 2007;48(12):1659–1672.
  • 95. Derba-Maceluch M, Awano T, Takahashi J, Lucenius J, Ratke C, Kontro I, et al. Suppression of xylan endotransglycosylase PtxtXyn10A affectscellulose microfibril angle in secondary wall in aspen wood. NewPhytol. 2015;205(2):666–681.
  • 96. Fry SC, Smith RC, Renwick KF, Martin DJ, Hodge SK, Matthews KJ. Xyloglucan endotransglycosylase, a new wall-loosening enzymeactivity from plants. Biochem J. 1992;282(pt 3):821–828.
  • 97. Nishitani K, Tominaga R. Endo-xyloglucan transferase, a novel class of glycosyltransferase that catalyzes transfer of a segment ofxyloglucan molecule to another xyloglucan molecule. J Biol Chem.1992;267(29):21058–21064.
  • 98. Nishitani K, Vissenberg K. Roles of the XTH protein family in the expanding cell. In: Verbelen JP, Vissenberg K, editors. The expanding cell. Berlin: Springer; 2006. p. 89–116. (Plant cell monographs).
  • 99. Baumann MJ, Eklof JM, Michel G, Kallas AM, Teeri TT, Czjzek M, et al. Structural evidence for the evolution of xyloglucanase activityfrom xyloglucan endo-transglycosylases: biological implications forcell wall metabolism. Plant Cell. 2007;19(6):1947–1963.
  • 100. Bateman RM, Crane PR, DiMichele WA, Kenrick PR, Rowe NP, Speck T, et al. Early evolution of land plants: phylogeny, physiology,and ecology of the primary terrestrial radiation. Annu RevEcol Syst. 1998;29(1):263–292.
  • 101. Strohmeier M, Hrmova M, Fischer M, Harvey AJ, Fincher GB, Pleiss J. Molecular modeling of family GH16 glycoside hydrolases: potentialroles for xyloglucan transglucosylases/hydrolases in cell wall modificationin the Poaceae. Protein Sci. 2009;13(12):3200–3213.
  • 102. Lahaye M, Jegou D, Buleon A. Chemical characteristics of insoluble glucans from the cell wall of the marine green alga Ulva lactuca(L.) Thuret. Carbohydr Res. 1994;262(1):115–125.
  • 103. Ray B, Lahaye M. Cell-wall polysaccharides from the marine green alga Ulva “rigida” (Ulvales, Chlorophyta). Chemical structure of ulvan. Carbohydr Res. 1995;274:313–318.
  • 104. Kim YH, Kim CY, Song WK, Park DS, Kwon SY, Lee HS, et al. Overexpression of sweetpotato swpa4 peroxidase results in increased hydrogenperoxide production and enhances stress tolerance in tobacco. Planta. 2008;227(4):867–881.
  • 105. Eklof JM, Shojania S, Okon M, McIntosh LP, Brumer H. Structurefunction analysis of a broad specificity Populus trichocarpa endo-glucanase reveals an evolutionary link between bacterial licheninases and plant XTH gene products. J Biol Chem. 2013;288(22):15786–15799.
  • 106. Fry SC, Mohler KE, Nesselrode BHWA, Frankov L. Mixedlinkage β-glucan: xyloglucan endotransglucosylase, a novelwall-remodeling enzyme from Equisetum (horsetails) and charophyticalgae. Plant J. 2008;55(2):240–252.
  • 107. Mohler KE, Simmons TJ, Fry SC. Mi xed-linkage glucan:xyloglucan endotransglucosylase (MXE) re-models hemicelluloses in Equisetum shoots but not in barley shoots orEquisetum callus. New Phytol. 2013;197(1):111–122.
  • 108. Hrmova M, Farkas V, Lahnstein J, Fincher GB. A barley xyloglucan xyloglucosyl transferase covalently links xyloglucan, cellulosic substrates, and (1,3;1,4)-β-D-glucans. J Biol Chem. 2007;282(17):12951–12962.
  • 109. Cosgrove DJ. Growth of the plant cell wall. Nat Rev Mol Cell Biol. 2005;6(11):850–861.
  • 110. Mouille G, Ralet MC, Cavelier C, Eland C, Effroy D, Hématy K, et al. Homogalacturonan synthesis in Arabidopsis thalianarequires a Golgi-localized protein with a putative methyltransferasedomain. Plant J. 2007;50(4):605–614.
  • 111. Krupková E, Immerzeel P, Pauly M, Schmülling T. The TUMOROUS SHOOT DEVELOPMENT2 gene of Arabidopsis encoding a putative methyltransferase is required for cell adhesion and coordinatedplant development. Plant J. 2007;50(4):735–750.
  • 112. McCarthy TW, Der JP, Honaas LA, dePamphilis CW, Anderson CT. Phylogenetic analysis of pectin-related gene families in Physcomitrellapatens and nine other plant species yields evolutionaryinsights into cell walls. BMC Plant Biol. 2014;14(1):79.
  • 113. Atmodjo MA, Hao Z, Mohnen D. Evolving views of pectin biosynthesis. Annu Rev Plant Biol. 2013;64(1):747–779.
  • 114. Braccini I, Pérez S. Molecular basis of Ca2+-induced gelation in alginates and pectins: the egg-box model revisited. Biomacromolecules.2001;2(4):1089–1096.
  • 115. Mohnen D. Pectin structure and biosynthesis. Curr Opin Plant Biol. 2008;11(3):266–277.
  • 116. Proseus TE, Boyer JS. Calcium pectate chemistry controls growth rate of Chara corallina. J Exp Bot. 2006;57(15):3989–4002.
  • 117. Domozych DS, Serfis A, Kiemle SN, Gretz MR. The structure and biochemistry of charophycean cell walls: I. Pectins of Penium margaritaceum.Protoplasma. 2007;230(1-2):99–115.
  • 118. Eder M, Lütz-Meindl U. Analyses and localization of pectin-like carbohydrates in cell wall and mucilage of the green alga Netrium digitus. Protoplasma. 2010;243(1–4):25–38.
  • 119. O’Neill MA, Warrenfeltz D, Kates K, Pellerin P, Doco T, Darvill AG, et al. Rhamnogalacturonan-II, a pectic polysaccharide in the walls of growing plant cell, forms a dimer that is covalently cross-linked by a borate ester. J Biol Chem. 1996;271(37):22923–22930. http://dx.doi. org/10.1074/jbc.271.37.22923
  • 120. O’Neill MA, Eberhard S, Albersheim P, Darvill AG. Requirement of borate cross-linking of cell wall rhamnogalacturonan II for Arabidopsisgrowth. Science. 2001;294(5543):846–849.
  • 121. Perez S, Rodríguez-Carvajal MA, Doco T. A complex plant cell wall polysaccharide: rhamnogalacturonan II. A structure in quest of a function. Biochimie. 2003;85(1–2):109–121.
  • 122. Matsunaga T, Ishii T, Matsumoto S, Higuchi M, Darvill A, Albersheim P, et al. Occurrence of the primary cell wall polysaccharide rhamnogalacturonan II in pteridophytes, lycophytes, and bryophytes. Implications for the evolution of vascular plants. Plant Physiol.2004;134(1):339–351.
  • 123. Pabst M, Fischl RM, Brecker L, Morelle W, Fauland A, Köfeler H, et al. Rhamnogalacturonan II structure shows variation in the sidechains monosaccharide composition and methylation status withinand across different plant species. Plant J. 2013;76:61–72.
  • 124. York WS, Darvill AG, McNeil M, Albersheim P. 3-deoxy-d-manno- 2-octulosonic acid (KDO) is a component of rhamnogalacturonan II, apectic polysaccharide in the primary cell walls of plants. Carbohydr Res.1985;138(1):109–126.
  • 125. Becker B, Becker D, Kamerling JP, Melkonian M. 2-ketosugar acids in green flagellates: a chemical marker for prasinophyceanscales. J Phycol. 1991;27(4):498–504. http://dx.doi. org/10.1111/j.0022-3646.1991.00498.x
  • 126. Royo J, Gımez E, Hueros G. CMP–KDO synthetase: a plant gene borrowed from gram-negative eubacteria. Trends Genet. 2000;16(10):432–433.
  • 127. Harholt J, Suttangkakul A, Vibe Scheller H. Biosynthesis of pectin. Plant Physiol. 2010;153(2):384–395.
  • 128. Willats WG, Orfila C, Limberg G, Buchholt HC, van Alebeek GJ, Voragen AG, et al. Modulation of the degree and pattern of methylesterificationof pectic homogalacturonan in plant cell walls. Implicationsfor pectin methyl esterase action, matrix properties, and celldhesion. J Biol Chem. 2001;276(22):19404–19413. http://dx.doi. org/10.1074/jbc.M011242200
  • 129. Peter G, Neale D. Molecular basis for the evolution of xylem lignification. Curr Opin Plant Biol. 2004;7(6):737–742. http://dx.doi. org/10.1016/j.pbi.2004.09.002
  • 130. Boyce CK, Zwieniecki MA, Cody GD, Jacobsen C, Wirick S, Knoll AH, et al. Evolution of xylem lignification and hydrogel transportregulation. Proc Natl Acad Sci USA. 2004;101(50):17555–17558.
  • 131. Raven JA. Physiological correlates of the morphology of early vascular plants. Biol J Linn Soc. 1984;88(1–2):105–126. http://dx.doi. org/10.1111/j.1095-8339.1984.tb01566.x
  • 132. Weng JK, Chapple C. The origin and evolution of lignin biosynthesis. New Phytol. 2010;187(2):273–285. http://dx.doi. org/10.1111/j.1469-8137.2010.03327.x
  • 133. Coleman HD, Samuels AL, Guy RD, Mansfield SD. Perturbed lignification impacts tree growth in hybrid poplar – a function of sink strength, vascular integrity, and photosynthetic assimilation. Plant Physiol.2008;148(3):1229–1237.
  • 134. Quentin M, Allasia V, Pegard A, Allais F, Ducrot PH, Favery B, et al. Imbalanced lignin biosynthesis promotes the sexual reproduction ofhomothallic oomycete pathogens. PLoS Pathog. 2009;5(1):e1000264.
  • 135. Yuan JS, Köllner TG, Wiggins G, Grant J, Degenhardt J, Chen F. Molecular and genomic basis of volatile-mediated indirect defense against insects in rice. Plant J. 2008;55(3):491–503. http://dx.doi. org/10.1111/j.1365-313X.2008.03524.x
  • 136. Fry SC. Primary cell wall metabolism: tracking the careers of wall polymers in living plant cells. New Phytol. 2004;161(3):641–675.
  • 137. Somerville C, Bauer S, Brininstool G, Facette M, Hamann T, Milne J, et al. Toward a systems approach to understanding plant cell walls.Science. 2004;306(5705):2206–2211.
  • 138. Boerjan W, Ralph J, Baucher M. Lignin biosynthesis. Annu Rev Plant Biol. 2003;54:519–546. arplant.54.031902.134938
  • 139. Boudet AM, Lapierre C, Grima-Pettenati J. Biochemistry and molecular biology of lignification. New Phytol. 1995;129(2):203–236. http://
  • 140. Barceló AR, Ros LVG, Gabaldón C, López-Serrano M, Pomar F, Carrión JS, et al. Basic peroxidases: the gateway for lignin evolution? Phytochem Rev. 2004;3(1–2):61–78.
  • 141. Espiñeira JM, Novo Uzal E, Gómez Ros LV, Carrión JS, Merino F, Ros Barceló A, et al. Distribution of lignin monomers and the evolution oflignification among lower plants. Plant Biol. 2011;13(1):59–68.
  • 142. Ralph J, Bunzel M, Marita JM, Hatfield RD, Lu F, Kim H, et al. Peroxidase-dependent cross-linking reactions of p-hydroxycinnamates in plant cell walls. Phytochem Rev. 2004;3(1–2):79–96. http://dx.doi. org/10.1023/B:PHYT.0000047811.13837.fb
  • 143. Jin Z, Matsumoto Y, Tange T, Akiyama T, Higuchi M, Ishii T, et al. Proof of the presence of guaiacyl–syringyl lignin in Selaginella tamariscina. J Wood Sci. 2005;51(4):424–426. http://
  • 144. Gómez Ros LV, Gabaldón C, Pomar F, Merino F, Pedreño MA, Barceló AR. Structural motifs of syringyl peroxidases predate not only the gymnosperm-angiosperm divergence but also the radiation of tracheophytes. New Phytol. 2007;173(1):63–78. http://dx.doi. org/10.1111/j.1469-8137.2006.01898.x
  • 145. Weng JK, Li X, Stout J, Chapple C. Independent origins of syringyl lignin in vascular plants. Proc Natl Acad Sci USA. 2008;105(22):7887–7892.
  • 146. Lewis NG, Yamamoto E. Lignin: occurrence, biogenesis and biodegradation. Annu Rev Plant Physiol Plant Mol Biol. 1990;41(1):455–496.
  • 147. Siegel SM. Evidence for the presence of lignin in moss gametophytes. Am J Bot. 1969;56(2):175.
  • 148. Reznikov VM, Mikhaseva M, Zil’bergleit M. The lignin of the alga Fucus vesiculosus. Chem Nat Comp. 1978;14:554–556.
  • 149. Delwiche CF, Graham LE, Thomson N. Lignin-like compounds and sporopollenin Coleochaete, an algal model for land plant ancestry.Science. 1989;245(4916):399–401.
  • 150. Ligrone R, Carafa A, Duckett JG, Renzaglia KS, Ruel K. Immunocytochemical detection of lignin-related epitopes in cell walls in bryophytes and the charalean alga Nitella. Plant Syst Evol. 2008;270(3–4):257–272.
  • 151. Xu Z, Zhang D, Hu J, Zhou X, Ye X, Reichel KL, et al. Comparative genome analysis of lignin biosynthesis gene families across the plantkingdom. BMC Bioinformatics. 2009;10(11 suppl):S3.
  • 152. Martone PT, Estevez JM, Lu F, Ruel K, Denny MW, Somerville C, et al. Discovery of lignin in seaweed reveals convergent evolution of cell-wall architecture. Curr Biol. 2009;19(2):169–175. http://dx.doi. org/10.1016/j.cub.2008.12.031
  • 153. Boudet AM, Kajita S, Grima-Pettenati J, Goffner D. Lignins and lignocellulosics: a better control of synthesis for new and improveduses. Trends Plant Sci. 2003;8(12):576–581.
  • 154. Nishiyama T, Fujita T, Shin-I T, Seki M, Nishide H, Uchiyama I, et al. Comparative genomics of Physcomitrella patens gametophytic transcriptome and Arabidopsis thaliana: implication for land plant evolution. Proc Natl Acad Sci USA. 2003;100(13):8007–8012. http://
  • 155. Meyer K, Shirley AM, Cusumano JC, Bell-Lelong DA, Chapple C. Lignin monomer composition is determined by the expression of acytochrome P450-dependent monooxygenase in Arabidopsis. ProcNatl Acad Sci USA. 1998;95(12):6619–6623.
  • 156. Xue X, Fry SC. Evolution of mixed-linkage (1→3,1→4)-β-D-glucan (MLG) and xyloglucan in Equisetum (horsetails) and other monilophytes. Ann Bot. 2012;109(5):873–886.
Typ dokumentu
Identyfikator YADDA
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.