PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
2015 | 24 | 3 |
Tytuł artykułu

Hydroclimatic trends in areas with high agricultural productivity in Northern Mexico

Warianty tytułu
Języki publikacji
EN
Abstrakty
EN
Global climate change affects not only temperature but also the hydrologic cycle and therefore the aridity index, with variations at the local level. A non-parametric analysis was carried out on time series data collected from temperature and precipitation records (1970 to 2011) from 38 CONAGUA (National Water Commission) weather stations located in the Mexican states of Sinaloa, Baja California Sur, Durango, Sonora, and Chihuahua. The magnitude of change trends of average, maximum, and minimum temperature and precipitation, potential evapotranspiration, and the aridity index were calculated. The data were aggregated, and the Mann-Kendall statistic calculated using the MOCLIC 1.0 program, to determine whether there was continuity in the data from each station and to define the magnitude of the statistically significant trend under the threshold α=0.05. The magnitude of the change trend was determined for significant trends using Sen’s method of slopes. Potential evapotranspiration and the aridity index were calculated by the Hargreaves and UNEP methods. The results show that the climate variables displayed positive and negative trends; mainly temperature, with a range of -0.13 to 0.16ºC·yr⁻¹, which is above world averages. The values obtained for RMSE, bias, the Pearson correlation coefficient (r) and the coefficient of determination (R²) do not show significant differences between the control values and the calculated values. It was concluded that aggregating significant trends can provide information on the direction of local climate change in this environment in northern Mexico, and its important consequences and repercussions, as well as impacts on social and environmental systems.
Słowa kluczowe
Wydawca
-
Rocznik
Tom
24
Numer
3
Opis fizyczny
p.1165-1180,fig.,ref.
Twórcy
  • Interdisciplinary Research Center for Integrated Regional Development, National Polytechnic Institute, Sinaloa Unit, Mexico
  • Interdisciplinary Research Center for Integrated Regional Development, National Polytechnic Institute, Sinaloa Unit, Mexico
  • Department of Research and Graduate Studies, National Polytechnic Institute, D.F., Mexico
  • Center for Technological Innovation and Research, National Polytechnical Institute, Cerrada de Cecati S/N, Col. Santa Catarina, Azcapotzalco D.F., Mexico
  • Northeastern Center for Biological Research, Playa Palo de Santa Rita Sur 195; La Paz, B.C.S. Mexico
  • Interdisciplinary Research Center for Integrated Regional Development, National Polytechnic Institute, Sinaloa Unit, Mexico
Bibliografia
  • 1. IPCC. The physical Science Basis. pp. 33, 2013.
  • 2. LENDERINK G., MEIJGAARD V.E. Increase in hourly precipitation extremes beyond expectations from temperature changes. Nature Geoscience 1, 511, 2008. doi:10.1038/ngeo262
  • 3. ROJAS E., ARCE B., PEÑA A., BOSHELL F., AYARZA M. Quantification and interpolation of local temperature and precipitation trends in high Andean zones of Cundinamarca and Boyacá (Colombia). Revista Corpoica – Ciencia y Tecnología Agropecuaria: 11, (2), 173, 2010.
  • 4. STERN N. H., TREASURY, G. B. The Economics of Climate Change: The Stern Review, Cambridge University Press. 2007.
  • 5. NICHOLLS, R.J., CAZENAVE A. Sea-level rise and its impact on coastal zones, Science (New York) 328(5985): pp. 1517-20, http://www.ncbi.nlm.nih.gov/pubmed/20558707. (Accessed: June 29, 2013). 2010.
  • 6. CROMPTON R., McANENENEY J. The cost of natural disasters in Australia: The case for disaster risk reduction, The Australian Journal of Emergency Management, 23, (4), 43, 2008.
  • 7. HARGREAVES G.H., SAMANI S.A. Reference crop evapotranspiration from temperature. Appl. Eng. Agric. ASAE, 1, (2), 96, 1985.
  • 8. ANÓNIMO. World Atlas of Desertification. UNEP. Edward Arnold, Sevenoaks, UK. 1992.
  • 9. DÍAZ P., SÁNCHEZ I., QUIROZ R., GARATUZA P., WATTS T., CRUZ I. Spatial interpolation of rainfall precipitation in the windward and leeward zone of the Gulf of Mexico. Agricultura Técnica en México 34, (3), 279, 2008.
  • 10. NORZAGARAY C. M., MUÑOZ S. P., SÁNCHEZ V. L., CAPURRO F. L. LLANES C. O. Aquaculture: Current status and research challenges in Mexico. Revista AquaTIC. 37, (1), 1, 2012.
  • 11. LLANES C. O., NORZAGARAY C. M., MAYA D. Y., MUÑOZ S. P., BELTRÁN M. F. A., MURILLO A. B., TROYO D. E. Hydroenvironmental effects of water extraction from the Sinaloa River aquifer. Universidad y Ciencia. 27, (3), 239, 2011.
  • 12. ALIANZA PARA LA SUSTENTABILIDAD DEL NOROESTE COSTERO MEXICANO (ALCOSTA). Towards sustainable tourism on the northeast coast of Mexico. Mexico City. 2011.
  • 13. INEGI. Mexican National Institute of Geography and Statistics 2011 Statistical yearbook by state. México, ISSN 1405-910X, D.F. 2011.
  • 14. INEGI. (2010). Mexican National Institute of Geography and Statistics. Second Population and Housing Census 2005. Main results by locality www.inegi.org.mx/sistemas/consulta_resultados/iter2010.aspx?c=27329&s=est.
  • 15. LLANES C. O., NORZAGARAY C. M., MUÑOZ S. P., RUIZ G. R. Groundwater: Aquaculture alternative in north-east Mexico. Revista AquaTIC, Zaragoza Spain, n° 38, pp. 10-20. 2013.
  • 16. YUE S., WANG C.Y. Regional streamflow trend detection with consideration of both temporal and spatial correlation. Int. J. Climatol., 22, (8), 933, 2002. doi:10.1002/joc.781
  • 17. KUMAR V., JAIN S.K. Trends in seasonal and annual rainfall and rainy days in Kashmir Valley in the last century. Quatern. Int., 212, (1), 64, 2010. doi:10.1016/j.quaint.2009.08.006
  • 18. KAHYA E., KALAYCI S. Trend analysis of streamflow in Turkey. J. Hydrol., 289, (1-4), 128, 2004. doi:10.1016/j.jhydrol.2003.11.006
  • 19. AKSU H., KOSCU S., SIMSEK O. Trend analysis of hydrometeorological parameters in climate regions of Turkey. In: State Hydraulic Works, http://balwois.com/balwois/administration/full_paper/ffp-1457.pdf. (Accessed: June 20, 2013). 2010.
  • 20. YUNLING H., ZHANG Z. Climate Change from 1960 to 2000 in the Lancang River Valley, China. Mt. Res. Dev. 25, (4), 341, 2005.
  • 21. BAUTISTA F.A., BAUTISTA HERNÁNDEZ D.A., ÁLVAREZ O., ANAYA ROMERO M., DE LA ROSA D. Software for identifying climate change trends at the local level: A case study in Yucatán, Mexico. Revista Chapingo. Serie de Ciencias Forestales y del Ambiente: 19, (1), 81, 2013.
  • 22. VAN-BELLE G., HUGHES J. P. Nonparametric tests for trend in water quality. Water Resour. Res., 20, (1), 127, 1984.
  • 23. FOOD & AGRICULTURE ORGANIZATION OF THE UNITED NATIONS (FAO) –SECRETARIA DE AGRICULTURA, GANADERIA, DESARROLLO RURAL, PESCA Y ALIMENTACION (SAGARPA). Mexico: The agricultural sector and the challenge of climate change. Mexico City. 2012.
  • 24. OJEDA BUSTAMANTE W., SIFUENTES IBARRA E., ÍÑIGUEZ COBARRUBIAS M., MONTERO MARTÍNEZ M.J. Impact of climate change on crop water needs and development. Agrociencia 45, 1, 2011.
  • 25. SEMARNAT. Wetlands: First workshop on Ramsar sites in Baja California Sur. Mexico. 2011.
  • 26. UN. Climate dynamics, trends and variability. Chile. 2011.
Typ dokumentu
Bibliografia
Identyfikatory
Identyfikator YADDA
bwmeta1.element.agro-4af170d0-c2d5-410e-b6bd-02575ea0262e
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.