PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Czasopismo
2017 | 24 | 2 |
Tytuł artykułu

Rola obróbki wstępnej biomasy lignocelulozowej w produkcji bioetanolu II generacji

Autorzy
Treść / Zawartość
Warianty tytułu
EN
Role of lignocellulosic biomass pretreatment in the production of bioethanol II generation
Języki publikacji
PL
Abstrakty
PL
Celem niniejszej pracy było dokonanie przeglądu doniesień literaturowych dotyczących produkcji bioetanolu II generacji, ze szczególnym uwzględnieniem roli obróbki wstępnej biomasy lignocelulozowej. W artykule scharakteryzowano bazę surowcową i etapy wytwarzania bioetanolu oraz oceniano potencjalne korzyści związane z produkcją bioetanolu otrzymywanego z biomasy lignocelulozowej. Oprócz tego podkreślono trudności eksploatacji biomasy lignocelulozowej spowodowane głównie krystaliczną strukturą celulozy i występowaniem w strukturze biomasy ligniny. Przedstawiono klasyfikację wiodących metod obróbki wstępnej i ich konieczność dla efektywnego przygotowania surowców do fermentacji etanolowej. Omówiono zasadność doboru odpowiednich metod obróbki wstępnej biomasy, wskazując potencjalne korzyści, jak i straty powodowane stosowaniem nieodpowiednich reagentów i warunków. Przedstawiono problemy związane z użytkowaniem środków chemicznych podczas etapu obróbki wstępnej, obejmujące m. in. koszt zakupu, recykling odczynników, korozję sprzętu, konieczność neutralizacji bądź usunięcia przed etapem fermentacji. Zwrócono także uwagę na parametry procesowe, stosowane enzymy, drożdże i inne mikroorganizmy wykazujące uzdolnienia do fermentacji heksoz i pentoz generowanych podczas hydrolizy celulozy i hemicelulozy.
EN
The aim of this paper was to review the literature reports on the production of second generation bioethanol, with particular emphasis on the role of the pre-treatment of lignocellulosic biomass. The paper characterises raw materials base and the stages of production of bioethanol. Moreover it provides an evaluation of potential benefits associated with the production of bioethanol from lignocellulosic biomass. Apart from that, it highlights difficulties of exploitation of lignocellulosic biomass which are mainly caused by the crystalline structure of cellulose and the presence of lignin in the structure of the biomass. It presents the classification of the leading methods of pretreatment and their usefulness for effective preparation of raw materials for ethanol fermentation. It discusses the desirability of selection of appropriate methods of pre-treatment of biomass, indicating the potential benefits as well as losses caused by the use of unsuitable reagents and conditions. It presents the problems related to the use of chemical agents in the pretreatment stage, e.g. the cost of purchase and recycling of chemicals, corrosion of equipment, the need for neutralisation or removal of chemicals before the fermentation stage. Attention is also paid to the process parameters, enzymes, yeasts and other microorganisms used in the process, having abilities to ferment hexoses and pentoses generated during the hydrolysis of cellulose and hemicellulose.
Słowa kluczowe
PL
Wydawca
-
Czasopismo
Rocznik
Tom
24
Numer
2
Opis fizyczny
s.301-318,rys.,tab.,bibliogr.
Twórcy
Bibliografia
  • Abril D., Abril A., 2009. Ethanol from lignocellulosic biomass. Cien. Inv. Agr., 36, 177-190.
  • Agbor V.B., Cicek N., Sparling R., Berlin A., Levin D.B., 2011. Biomass pretreatment: Fundamentals toward application. Biotechnol. Adv., 29, 675-685.
  • Alvira P., Tomás-Pejó E., Ballesteros M., Negro M.J., 2010. Pretreatment technologies for an efficient bioethanol production process based on enzymatic hydrolysis: A review. Bioresource Technol., 101, 4851-4861.
  • Avci A., Donmez S., 2006. Effect of zinc on ethanol production by two Thermoanaerobacter strains. Process. Biochem., 41, 984-989.
  • Balan V., Sousa L.C., Chundawat S.P.S., Marshall D., Sharma L.N., Chambliss C.K., Dale B.E., 2009. Enzymatic diagestibility and pretreatment degradation products of AFEX-treated hardwoods (Populus nigra). Biotechnol. Progr., 25, 365-375.
  • Balat M., 2011. Production of bioethanol from lignocellulosic materials via biochemical pathway: a review. Energy Conversion and Management, 52, 858-875.
  • Bääth H., Gällerspäng A., Hallsby G., Lundström A., Löfgren P., Nilsson M., Ståhl G., 2002. Remote sensing, field survey, and long-termforecasting: an efficient combination for local assessments of forest fuels. Biomass Bioenerg., 22(3), 145-157. 314
  • Börjesson P., 2009. Good or bad bioethanol from a greenhouse gas perspective – What determines his? Appl. Energ., 86, 589-594.
  • Cardona Alzate C.A., Sánchez Toro O.J., 2006. Energy consumption analysis of integrated flow sheets for production of fuel ethanol from lignocellulosic biomass. Energy, 31, 2447-2459.
  • Carvalheiro F., Duarte L.C., Gírio F.M., 2008. Hemicellulose Biorefineries: A Review on Biomass Pretreatments. Journal of Scientific & Industrial Research, 67, 849-864.
  • Chandel A. K., Chan E.S, Rudravaram R, Narasu M. L., Rao L.V., Ravindra P., 2007. Economics and environmental impact of bioethanol production technologies: an appraisal. Biotechnol. Mol. Biol. Rev., 2, 14-32.
  • Chandel A.K., Gonҫalves B.C.M., Strap J.L, da Silva S.S., 2015. Biodelignification of lignocellulose substrates: An intrinsic and sustainable pretreatment strategy for clean energy production. Crit. Rev. Biotechnol., 35(3), 281-293. Chum H.L., Douglas L.J., Feinberg, D.A., Schroeder H.A., 1985. Evaluation of pretreatments of biomass
  • for enzymatic hydrolysis of cellulose. Solar Energy Research Institute: Golden, Colorado, 1-64. Cook G.M., Morgan H.W., 1994. Hyperbolic growth of Thermoanaerobacter thermohydrosulfuricus (Clostridium thermohydrosulfuricum) increases ethanol production in pH-controlled batch culture. Appl. Microbiol. Biotechnol., 41, 84-89.
  • Curreli N., Fadda M.B., Rescigno A., Rinaldi A.C., Soddu G., Sollai F., Vaccargiu S., Sanjust E., Rinaldi A., 1997. Mild alkaline/oxidative pretreatment of wheat straw. Process Biochem., 32, 665-670.
  • Dehkhoda A., 2008. Concentrating lignocellulosic hydrolysate by evaporation and its fermentation by repeated fedbatch using flocculating Saccharomyces cerevisiae. Master thesis, Industrial Biotechnology Boras University and SEKAB E-Technology, Sweden.
  • Delucci M.A., 1991. Emissions of greenhouse gases from the use of transportation fuels and electricity, Center for Transportation Research, Argonne National Laboratory, Argonne, IL., USA.
  • Demirbas A, 2008. The importance of bioethanol and biodiesel from biomass.Energ. Source, 3, 177-185.
  • Demirbas A., 2009. Biofuels securing the planet’s future Energy needs. Energ. Convers. Manage., 50, 9, 2239-2249.
  • Demirbas M. F., Balat M., and Balat H., 2009. Potential contribution of biomass to the sustainable energy development. Energy Convers. Manage., 50(7), 1746-1760.
  • Ebringerova A., Hromadkova Z., Heinze T., 2005. Hemicellulose. Adv. Polym. Sci., 186, 1-67. Fang L.T., Gharpuray M.M., Lee Y.H., 1987. Cellulose hydrolysis biotechnology monographs. Berlin, Germany: Springer, 55.
  • Feldman D., Banu D., Natansohn A., Wang J., 1991. Structure–properties relations of thermally cured epoxy-lignin polyblends. J. Appl. Polym. Sci., 42, 1537-1550.
  • Fernandes A.N., Thomas L.H., Altaner C.M., Callow P., Forsyth V.T., Apperley D.C., Kennedy C.J., Jarvis M.C., 2011. Nanostructure of cellulose microfibrils in spruce wood. Proceedings of the National Academy of Sciences of the United States of America, 108, 1195-1203.
  • Fischer G., Schrattenholzer L., 2001. Global bioenergy potentials through 2050. Biomass Bioenerg., 20(3), 151-159.
  • Galbe M., Zacchi G., 2007. Pretreatment of Lignocellulosic Materials for Efficient Bioethanol Production. Adv. Biochem. Engin. Biotechnol., 108, 41-65.
  • Galbe M., Zacchi G., 2012. Pretreatment: the key to efficient utilization of lignocellulosic materials. Biomass Bioenerg., 46, 70-78.
  • Garcia-Cubero M.T., Gonzalez-Benito G., Indacoechea I., Coca M., Bolado S., 2009. Effect of ozonolysis pretreatment on enzymatic digestibility of wheat and rye straw. Bioresource Technol., 100, 1608-1613.
  • Geng X., Li K., 2002. Degradation of non-phenolic lignin by the whiterot fungus Pycnoporus cinnabarinus. Appl. Microbiol. Biot., 60, 342-346.
  • Gnansounou E., 2010. Production and use of lignocellulosic bioethanol in Europe: Current situation and perspectives. Bioresource Technol., 101, 13, 4842-4850.
  • Goldemberg J., 2008. Environmental and ecological dimensions of biofuels. Proceedings of the Conference on the Ecological Dimensions of Biofuels, March 10, Washington, DC.
  • Gomez L.D., Steele-King C. G., McQueen-Mason S. J., 2008. Sustainable liquid biofuels from biomass: the writing’s on the walls. New phytol., 178(3): 473-485.
  • Hahn-Hagerdal B., Galbe M., Gorwa-Grauslund M.F., Liden G., Zacchi G., 2006. Bioethanol – the fuel of tomorrow from the residues of today. Trends Biotechnol., 24, 549-556.
  • Hendriks A.T.., Zeeman G., 2009. Pretreatments to enhance the digestibility of lignocellulosic biomass. Bioresource Technol., 100(1), 10-18.
  • Iranmahboob J., Nadim F., Monemi S., 2002. Optimizing acid-hydrolysis: a critical step for production of ethanol from mixed wood chips. Biomass Bioenerg., 22, 401-404.
  • Kang Q., Appels L., Baeyens J., Dewil R., Tan T., 2014b. Energy- efficient production of cassava- based bio-ethanol. Advances in Bioscience and Biotechnology, 5(12), 925-939.
  • Kang Q., Appels L., Tan T., Dewil R., 2014a. Bioethanol from lignocellulosic biomass: Current findings determine research priorities. Scientific World J., http://dx.doi.org/10.1155/2014/298153
  • Kang Q., Huybrechts J., van der Bruggen B., Baeyens J., Tan T.W., Dewil R., 2014c. Hydrophilic membranes to replace molecular sieves in dewatering the bio-ethanol/water azeotropic mixture. Sep. Purif. Technol.,136, 144-149.
  • Karunanithy C., Muthukumarappan K., Julson J.L., 2008. Influence of high shear bioreactor parameters on carbohydrate release from different biomasses. Conference Paper: Providence, Rhode Island, doi:10.13031/2013.24960
  • Katahira S., Mizuike A., Fukuda H., Kondo A., 2006. Ethanol fermentation from lignocellulosic hydrolysate by a recombinant xylose- and cellooligosaccharide-assimilating yeast strain. Appl. Microbiol. Biotechnol.,72, 1136-1143.
  • Keshwani D.R., Cheng J.J., 2009. Switchgrass for bioethanol and other value-added applications: a review. Bioresource Technol., 100, 1515-1523.
  • Klinke H.B., Ahring B.K., Schmidt A.S., Thomsen A.B., 2002. Characterization of degradation products from alkaline wet oxidation of wheat straw. Bioresource Technol., 82, 1, 15-26.
  • Krajewski A., Witomski P., 2003. Ochrona drewna. Pod red. E. Ramus, Wyd. SGGW, Warszawa. Kumar P., Barrett D.M., Delwiche M.J., Stroeve P., 2009. Methods for pretreatment of lignocellulosic biomass for efficient hydrolysis and biofuel production. Ind. Eng. Chem. Res., 48, 3713-3729.
  • Kumar S., Singh N., Prasad R., 2010. Anhydrous ethanol:a renewable source of energy. Renew Sust. Energ. Rev., 14, 1830-1844.
  • Lang X., Macdonald D.G., Hill G.A., 2001. Recycle bioreactor for bioethanol production from wheat tarch II. Fermentation and economics. Energ. Source,23, 427-436.
  • Lee D., Owens V.N., Boe A., Jeranyama P., 2007. Composition of herbaceous biomass feedstocks. South Dakota State University Publication, SGINC1-07, Brookings, SD.
  • Lee J.W., Gwak K.S., Park J.Y., Park M.J., Choi D.H., Kwon M., et al., 2007. Biological pretreatment of softwood Pinus densiflora by three white rot fungi. J. Microbiol.,45, 485-491.
  • Li C., Tanjore D., He W., Wong J., Gardner J.L., Sale K.L., Simmons B.A., Singh S., 2013. Biotechnol. Biofuels, 6, 154.316
  • Lynd L.R., Van Zyl W.H., McBride J.E., Laser M., 2005. Consolidated bioprocessing of cellulosic biomass: an update. Curr. Opin. in Biotech., 16(5), 577-583.
  • Maurya D.P., Singla A., Negi S., 2015. An overview of key pretreatment processes for biological conversion of lignocellulosic biomass to bioethanol. 3 Biotech, 5, 597-609.
  • McMillan J.D., 1994. Pretreatment of lignocellulosic Biomass. In: Himmel M.E., BakerJ.O., Overend R.P. Enzymatic conversion of biomass for fuels production, ACS Symposium Series 566. American Chemical Society, Washington, DC, 292-324.M
  • Mosier N., Wyman C.E., Dale B.D., Elander R.T., Lee Y.Y., Holtzapple M., Ladisch C.M., 2005b. Features of promising technologies for pretreatment of lignocellulosic biomass. Bioresource Technol. 96, 673-686. Neeley W.C.,1984. Factor affecting the pretreatment of bio-mass with gaseous ozone. Biotechnol. Bioeng., 26, 59-65. Pan X., Arato C., Gilkes N., Gregg D., Mabee W., Pye K., Xiao Z., Zhang X., Saddler J., 2005. Biorefining of softwoods using ethanol organosolv pulping: Preliminary evaluation of proces streams for manufacture of fuel-grade ethanol and co-products. Biotechnol. Bioeng., 90, 473-481.
  • Pedersen M., Meyer A. S., 2009. Influence of substrate particle size and wet oxidation on physical surface structures and enzymatic hydrolysis of wheat straw. Biotechnol. Progrs., 25(2),. 399-408.
  • Pike P.W., Sengupta D., Hertwig T.A., 2008. Integrating biomass feedstocks into chemical production complexes using new and existing processes. Minerals Processing Research Institute, Louisiana State University, Baton Rouge, LA.
  • Rahikainen .J, Mikander S., Marjamaa K., Tamminen T., Lappas A., Viikari L., Kruus K., 2011. Inhibition of enzymatic hydrolysis by residual lignins from softwood-study of enzyme binding and inactivation on lignin-rich surface. Biotechnol. Bioeng., 108, 2823-2834.
  • Ralph J., Lundquist K., Brunow G., Lu F., Kim H., Schatz P.F., Marita J.M., Hatfield R.D., Ralph S.A., Christensen J.H., Boerjan W., 2004. Lignins: natural polymers from oxidative coupling of 4-hydroxyphenylpropanoids. Phytochem. Rev., 3, 29-60.
  • Ruffell J., 2008. Pretreatment and hydrolysis of recovered fibre for ethanol production. Master of Applied Science, The University of British Columbia. DOI 10.14288/1.0058544 http://hdl.handle. net/2429/1369
  • Saha B.C., 2003. Hemicellulose bioconversion. J. Ind. Microbiol. Biotechnol., 30, 279-291. Schmidt A.S., Mallon S., Thomsen A.B., Hvilsted S., Lawther J. M., 2002. Comparison of the chemical properties of wheat straw and beech fibers following alkaline wet oxidation and laccase treatments. J. Wood. Chem. Technol., 22(1), 39-53.
  • Silverstein R.A., Chen Y., Sharma-Shivappa R.R., Boyette M.D., Osborne J., 2008. A comparison of chemical pretreatment methods for improving saccharification of cotton stalks. Bioresource Technol., 98, 3000-3011.
  • Sun Y.E., Cheng, J.,2002. Hydrolysis of lignocellulosicmaterials for ethanol production: a review. Bioresource Technol., 83(1), 1-11.
  • Sørensen A., Teller P.J., Hilstrøm T., Ahring B.K., 2008. Hydrolysis of Miscanthus for bioethanol production using dilute acid presoaking combined with wet explosion pretreatment and enzymatic treatment. Bioresource Technol., 99, 14, 6602-6607.
  • Taherzadeh M.J., Karimi K., 2008. Pretreatment of lignocellulosic wastes to improve ethanol and biogas production: a review. Int. J. Mol. Sci., 9, 1621-51.
  • Tomas-Pejo E., Olive J.M., Ballesteros M., 2008. Realistic approach for full-scale bioethanol production from lignocellulose: a review. J. Sci. Ind. Res.,67, 874-84.
  • Ustawa z dnia 25 sierpnia 2006 r. o biokomponentach i biopaliwach ciekłych. Rozdział 1. Przepisy ogólne. Art. 2., Dziennik Ustaw Nr 169, poz. 1199. ROLA obróbki wstępnej biomasy lignocelulozowej ... 317
  • Vidal P.F., Molinier J., 1988. Ozonolysis of lignin – improvement of in vitro digestibility of poplar sawdust. Biomass,16, 1-17.
  • Wan C., Li Y., 2012. Fungal pretreatment of lignocellulosic biomass. Biotechnol. Adv., 30, 1447-57. Werther J., Saenger M., Hartge E.-U., Ogada T., Siagi Z., 2000. Combustion of agricultural residues. Prog. Energ. Combust, 26(1), 1-27.
  • Worall J., Anagnost S., Zabel R., 1997. Comparison of wood dacay among diverse lignicolous fungi. Mycologia, 89(2), 199-219.
  • Yang B., Wyman C.E., 2008. Pretreatment; the key to unlocking low-cost cellulosic ethanol. Biofuels Bioprod. Bioref., 2, 26-40.
  • Xiros Ch., Topakas E., Christakopoulos P., 2013. Hydrolysis and fermentation for cellulosic ethanol production. WIREs Energy Environ., 2, 633-654.
  • Zaldivar J, Nielsen J, Olsson L., 2001. Fuel ethanol production from lignocellulose: a challenge for metabolic engineering and process integration. Appl. Microbiol. Biot., 56,17-34.Zhang Y.H.P., Himmel M.E., Mielenz J.R., 2006. Outlook for cellulase improvement: screening and selection strategies. Biotechnol. Adv., 24, 452-81.
  • Zhang Y. J., Li Q., Su J. M. i in., 2015. A green and efficient technology for the degradation of cellulosicmaterials: structure changes and enhanced enzymatic hydrolysis of natural cellulose pretreated by synergistic interaction of mechanical activation and metal salt. Bioresource Technol., 177, 176-181.
  • Zhao Y., Wang Y., Zhu J. Y., Ragauskas A., Deng Y., 2008. Enhanced enzymatic hydrolysis of spruce by alkaline pretreatment at low temperature. Biotechnol. Bioeng, 99(6), 1320-1328. Zheng Y., Pan Z., Zhang R., 2009. Overview of biomass pretreatment for cellulosic ethanol production. Int. J. Agric. Biol. Eng., 2, 51-68.
  • Zhu J.Y., Wang G.S., Pan X.J., Gleisner R., 2008 The status of and key barriers in lignocellulosic ethanol production: a technological perspective. In: International conference on biomass energy technologies, Guangzhou, China, December 3-5.
Typ dokumentu
Bibliografia
Identyfikatory
Identyfikator YADDA
bwmeta1.element.agro-4acb1d53-aaf6-4538-9fcc-beb5667cea51
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.