PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
2017 | 26 | 6 |

Tytuł artykułu

Using different models to estimate N2O fluxes from maize cultivation in Poland

Autorzy

Warianty tytułu

Języki publikacji

EN

Abstrakty

EN
This paper presents a comparison of N₂O fluxes calculated using empirical and biogeochemical models at the country level applying different climatic conditions. The empirical tools follow Tier 1 and 2 IPCC methods, whereas the process-based model follows Tier 3. In our study the following tools were applied: for Tier 1 – BioGrace calculator, Tier 2 − Lesschen emission factors (Lesschen-EF), and Tier 3 − denitrificationdecomposition (DNDC) model. The N₂O fluxes were calculated for maize grown in four-yr crop rotation in Poland. The same input data were applied in all methods, and the sequence of N₂O fluxes from largest to lowest was: BioGrace calculator > Lesschen-EF > DNDC. The average N₂O emission from maize cultivation applying IPCC default value was 3.17 kg N ha⁻¹ yr⁻¹. Almost two-fold lower fluxes were calculated based on the Lesschen-EF and DNDC model. At a regional level, the Lesschen-EF as well as DNDC model were performed. Therefore, the Lesschen-EF could be recommended for countries to calculate N₂O emissions. The advantage of this approach is simplicity of obtaining the necessary data compared to the processbased model requirements. Additionally, the Tier 2 method offers mitigation measures comparable to the DNDC model, related to crop type, weather conditions, and management practices.

Słowa kluczowe

Wydawca

-

Rocznik

Tom

26

Numer

6

Opis fizyczny

p.2759-2766,fig.,ref.

Twórcy

autor
  • Department of Bioeconomy and Systems Analysis, Institute of Soil Science and Plant Cultivation − State Research Institute, 8 Czartoryskich Str., 24-100 Puławy, Poland
autor
  • Department of Bioeconomy and Systems Analysis, Institute of Soil Science and Plant Cultivation − State Research Institute, 8 Czartoryskich Str., 24-100 Pulawy, Poland

Bibliografia

  • 1. FAOSTAT. online: http://faostat.fao.org. 2015.
  • 2. EUROSTAT. Agriculture, forestry and fishery statistics. 2014 edition. European Union, Luxemburg, 2015.
  • 3. CSO. Statistical yearbook of agriculture, Central Statistical Office, Warsaw, Poland. 2015.
  • 4. EUROPEAN UNION. Directive 2009/28/EC of the European Parliament and of the Council of 23 April 2009 on the promotion of the use of Energy from renewable sources and amending and subsequently repealing Directives 2001/77/EC and 2003/30/EC. Official J. European Union. 140, 16, 2009.
  • 5. FORSTER P., RAMASWAMY V., ARTAXO P., BERNTSEN T., BETTS R., FAHEY D.W., HAYWOOD J., LEAN J., LOWE D.C., MYHRE G., NGANGA J., PRINN R., RAGA G., SCHULZ M., VAN DORLAND R. Changes in Atmospheric Constituents and in Radiative Forcing. In: Climate Change 2007: The Physical Science Basis. Contribution of Working Group I to the Fourth Assessment Report of the Intergovernmental Panel on Climate Change [Solomon, S., D. Qin, M. Manning, Z. Chen, M. Marquis, K.B. Averyt, M.Tignor and H.L. Miller (eds.)]. Cambridge University Press, Cambridge, United Kingdom and New York, NY, USA. 2007.
  • 6. SMITH K. A., CONEN F. Impacts of land management on fluxes of trace greenhouse gases. Soil Use Manage. 20, 255, 2004. doi: 10.1111/j.1475-2743.2004.tb00366.
  • 7. DECHOW R., FREIBAUER A. Assessment of German nitrous oxide emissions using empirical modelling approaches. Nutr. Cycl. Agroecosys. 91, 235, 2011.
  • 8. NYĆKOWIAK J., LEŚNY J., MERBOLD L., NIU S., HAAS E., KIESE R., BUTTERBACH-BAHL K., OLEJNIK J. Direct N₂O emission from agricultural soils in Poland between 1960 and 2009. Reg. Environ. Change. 14, 1073, 2014.
  • 9. STEHFEST E., BOUWMAN L. N₂O and NO emission from agricultural fields and soils under natural vegetation: summarizing available measurement data and modeling of global annual emissions. Nutr. Cycl. Agroecosys. 74, 207, 2006.
  • 10. OLECKA A., BEBKIEWICZ K., DĘBSKI B., DZIECUCHOWICZ M., JĘDRYSIAK P., KANAFA I., KARGULEWICZ J., RUTKOWSKI J., SKOŚKIEWICZ S., WAŚNIEWSKA D., ZASINA M., ZIMAKOWSKA-LASKOWSKA M., ŻACZEK M. Poland’s national inventory report 2016. National Centre for Emission Management. Warsaw, Poland. 2016.
  • 11. IPCC. IPCC Guidelines for National Greenhouse Gas Inventories. In: Eggleston S., Buendia L., Miwa K., Ngara T., Tanabe K. (Eds.), Agriculture, Forsetry and Other Land Use, IGES, Japan, Volume. 4. 2006.
  • 12. LOKUPITIYA E., PAUSTIAN K. Agricultural soil greenhouse gas emissions: a review of national inventory methods. J. Environ. Qual. 35, 1413, 2006.
  • 13. CETIN M., SEVIK H. Evaluating the recreation potential of Ilgaz Mountain National Park in Turkey. Environ. Monit. Assess. 188, 52, 2016.
  • 14. CETIN M. Determining the bioclimatic comfort in Kastamonu City. Environ. Monit. Assess. 187, 640, 2015.
  • 15. CETIN M. Using GIS analysis to assess urban green space in terms ofaccessibility: case study in Kutahya. International Journal of Sustainable Development & World Ecology, 22 (5), 420, 2015.
  • 16. CETIN M., ADIGUZEL F., KAYA O., SAHAP A. Mapping of bioclimatic comfort for potential planning using GIS in Aydin. Environ. Dev. Sustain. 2016. doi: 0.1007/s10668-016-9885-5
  • 17. CETIN M., SEVIK H. Assessing Potential Areas of Ecotourism through a Case Study in Ilgaz Mountain National Park. InTech, Eds: Leszek Butowski, 190, ISBN:978-953-51-2281-4, 2016.
  • 18. CETIN M., Sustainability of urban coastal area management: A case study on Cide. J. Sustain. Forest. 35 (7), 527, 2016.
  • 19. KAYA L.G., CETIN M., DOYGUN H. A holistic approach in analyzing the landscape potential: Porsuk Dam Lake and its environs, Turkey, Fresenius Environmental Bulletin 18 (8), 1525, 2009.
  • 20. SEVIK H., CETIN M., BELKAYALI N. Effects of Forests on Amounts of CO₂: Case Study of Kastamonu and Ilgaz Mountain National Parks. Pol. J. Environ. Stud. 24 (1), 253, 2015.
  • 21. SEVIK H., CETIN M. Effects of Water Stress on Seed Germination for Select Landscape Plants. Pol. J. Environ. 24 (2), 689, 2015.
  • 22. CETIN M., SEVIK H. Measuring the Impact of Selected Plants on Indoor CO₂ Concentrations. Pol. J. Environ. Stud. 25 (3), 973, 2016.
  • 23. CETIN M. A Change in the Amount of CO₂ at the Center of the Examination Halls: Case Study of Turkey. Stud. Ethno-Med. 10 (2), 146, 2016.
  • 24. CETIN M., SEVIK H. Change of air quality in Kastamonu city in terms of particulate matter and CO₂ amount. Oxidation Communications. 39, 3394, 2016.
  • 25. CETIN M., SEVIK H., ISINKARALAR K. Changes in the particulate matter and CO₂ concentrations based on the time and weather conditions: the case of Kastamonu, Oxidation Communications. 40, 477, 2017.
  • 26. SEVIK H., CETIN M., GUNEY K., BELKAYALI N. Influences of certain indoor plants on indoor CO₂ amount. Pol. J. Environ. 26 (4), doi:10.15244/pjoes/68875, 2017.
  • 27. ZHANG Y., NIU H. The development of the DNDC plant growth sub-model and the application of DNDC in agriculture: A review. Agric. Ecosyst. Environ. 230, 271, 2016.
  • 28. BEHEYDT D., BOECKX P., AHMED H.P., CLEEMPUT O.V. N₂O emission from conventional and minimum-tilled soils. Biol. Fert. Soils. 44, 863, 2008.
  • 29. LI C., FROLKING S., FROLKING T.A. A model of N₂O evolution from soil driven by rainfall events: 1. Model structure and sensitivity. J. Geophys. Res. 9, 9759, 1992.
  • 30. LI C., ZHUANG Y., CAO M., CRILL P., DAI Z., FROLKING S., MOORE III B., SALAS W., SONG W., WANG X.. Comparing a process-based agro-ecosystem model to the IPCC methodology for developing a national inventory of N₂O emissions from arable lands in China. Nutr. Cycl. Agroecosys. 6, 159, 2001.
  • 31. ABDALLA M., WATTENBACH M., SMITH P., AMBUS P., JONES M., WILLIAMS M. Application of the DNDC model to predict emissions of N₂O from Irish agriculture. Geoderma. 15, 327, 2009.
  • 32. LUGATO E., ZULIANI M., ALBERTI G., VEDOVE G.D., GIOLI B., MIGLIETTA F., PERESSOTTI A.. Application of DNDC biogeochemistry model to estimate greenhouse gas emissions from Italian agricultural areas at high spatial resolution. Agric. Ecosyst. Environ. 139, (4), 546, 2010.
  • 33. SMITH W.N., GRANT B.B., DESJARDINS R.L., WORTH D., LI C., BOLES S.H., HUFFMAN E.C. A tool to link agricultural activity data with the DNDC model to estimate GHG emission factors in Canada. Agric. Ecosyst. Environ. 136 (3-4), 301, 2010.
  • 34. RABAIL G., KHANIF M.Y., OAD F.C., HANAFI M.M., RADZIAH O. Estimation of greenhouse gases emission from rice filed of Kelantan, Malysia by using DNDC model. Pak. J. Agri. Sci. Volume 52, 247, 2015.
  • 35. GILHESPY S.L., ANTHONY S., CARDENAS L., CHADWICK D., DEL PRADO A., LI C., MISSELBROOK T., REES R.M., SALAS W., SANZ-COBENA A., SMITH P., TILSTON E.L., TOPP C.F.E., VETTER S., YELURIPATI J.B. First 20 years of DNDC (DeNitrification DeComposition): Model evolution. Ecol. Mode. 292, 51, 2014.
  • 36. BEHEYDT D., BOECKX P., SLEUTEL S., LI C., CLEEMPUT O.V. Validation of DNDC for 22 long-term N₂O field emission measurements. Atmos. Environ. 41 (29), 6196, 2007.
  • 37. GILTRAP D.L., LI C., SAGGAR S. DNDC: A process based model of greenhouse gas fluxes from agricultural soils. Agr. Ecoyst. Environ. 136, 292, 2010.
  • 38. PERLMAN J., HIJMANS R.J., HORWATH W.R. Modelling agricultural nitrous oxide emissions for large regions. Environ. Modell. Softw. 48, 183, 2013.
  • 39. PETER C., FIORE A., HAGEMANN U., NENDEL C., XILOYANNIS C. Improving the accounting of field emissions in the carbon footprint of agricultural products: a comparison of default IPCC methods with readily available medium-effort modeling approaches. Int. J. Life Cycle Assess. 21, 791, 2016.
  • 40. BIOGRACE. Harmonized Calculations of Biofuel Greenhouse Gas Emissions in Europe - Version 4d. http://biograce.net/home, 2015.
  • 41. SPUGNOLI P., DAINELLI R., D’AVINO L., MAZZONCINI M., LAZZERI L. Sustainability of sunflower cultivation for biodiesel production in Tuscany within the EU Renewable Energy Directive. Biosyst. Eng. 112 (1), 49, 2012.
  • 42. LESSCHEN J.P., VELTHOF G.L., DE VRIES W., KROS J. Differentiation of nitrous oxide emission factors for agricultural soils. Environ. Pollut. 159, 3215, 2011.
  • 43. KROS J., HEUVELINK G.B.M., REINDS G.J., LESSCHEN J.P., IOANNIDI V., VRIES. W. DE Uncertainties in model predictions of nitrogen fluxes from agro-ecosystems in Europe. Biogeosciences, 9, 4573, 2012.
  • 44. LEIP A., MARCHI G., KOEBLE R., KEMPEN M., BRITZ W., LI C. Linking an economic model for European agriculture with a mechanistic model to estimate nitrogen and carbon losses from arable soils in Europe. Biogeosciences, 5, 73, 2008.
  • 45. DUFOSSE K., BENOIT G., DROUET J.L., BESSOU C. Using agroecosystem modelling to improve the estimation of N₂O emissions in the life-cycle assessment of biofuels. Waste Biomass Valor. 4, 593, 2013.
  • 46. GABRIELLE B., LAVILLE P., DUVAL O., NICOULLAUD B., GERMON J.C., HENAULT C. Process-based modelling of nitrous oxide emissions from from wheat-cropped soils at the subregional scale. Global Biogeochem. Cy. 20 (4), 1, 2006.
  • 47. CARDENAS L.M., GOODAY R., BROWN L., SCHOLE-FIELD D., CUTTLE S., GILHESPY S., MATTHEWS R., MISSELBROOK T., WANG J., LI C., HUGHES G., LORD E.. Towards an improved inventory of N₂O from agriculture: Model evaluation of N₂O emission factors and N fraction leached from different sources in UK agriculture, Atmos. Environ. 79, 340, 2013.
  • 48. DEL GROSSO S.J., OGLE S.M., PARTON W.J. BREIDT F.J. Estimating uncertainty in N₂O emissions from US crop land soils. Glob. Biogeochem. Cy. 24, 1, 2010. doi:10.1029/2009GB003544
  • 49. KESIK M., AMBUS P., BARITZ R., BRUGGEMANN N., BUTTERBACH-BAHL K., DAMM M., DUYZER J., HORVATH L., KIESE R., KITZLER B., LEIP A., LI C., PIHLATIE M., PILEGAARD K., SEUFERT G., SIMPSON D., SKIBA U., SMIATEK G., VESALA T., ZECHMEISTER-BOLTENSTERN S. Inventories of N₂O and NO emissions from European forest soils. Biogeoscinces, 2, 353, 2005.
  • 50. GRANT R.F., PATTEY E. Modelling vaaribility in N₂O emissions from fertilized agricutrual fields. Soil Biol. Biochem. 35, 225, 2003.

Typ dokumentu

Bibliografia

Identyfikatory

DOI

Identyfikator YADDA

bwmeta1.element.agro-4abac276-0b8c-45e5-afd2-ae30e5d374b3
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.