Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
2018 | 27 | 5 |
Tytuł artykułu

A sorption study of bisphenol A in aqueous solutions on pristine and oxidized multi-walled carbon nanotubes

Warianty tytułu
Języki publikacji
Environmental protection draws great attention worldwide due to the release of various harmful pollutants that represent risks or threats to animals and humans. Among these pollutants, endocrinedisrupting chemicals (EDCs) as environmental contaminants interfere with the normal hormonal functions in wildlife and humans. This study proposes multi-walled carbon nanotubes – (MWCNTs) pristine and oxidized, and weathered for one year in environmental conditions – as sorbents for bisphenol A (BPA) from aqueous solution. Kinetic and isotherm models are examined. Better sorption capacities are shown for the functionalized MWCNTs-COOH because of the two types of predominating interactions that take place: electrostatic and π-π interactions. The Langmuir isotherm model fit better than the Freundlich one, showing that the adsorption of BPA on MWCNTs is a monolayer adsorption on homogeneous surfaces.
Słowa kluczowe
Opis fizyczny
  • National Research and Development Institute for Chemistry and Petrochemistry (ICECHIM), Bucharest, Romania
  • University POLITEHNICA of Bucharest, Romania
  • University POLITEHNICA of Bucharest, Romania
  • University POLITEHNICA of Bucharest, Romania
  • 1. ZHANG Y. On the climatic uncertainty to the environment extremes: a Singapore case and statistical approach. Polish Journal of Environmental Studies, 24, 1413, 2015.
  • 2. MA X., AGARWAL S. Adsorption of emerging ionizable contaminants on carbon nanotubes: Advancements and Challenges. Molecules, 21, 628, 2016.
  • 3. GU W., CHENG B., LI Y., Interference adsorption of cadmium with a variety of pollutants in sediments based on fractional factorial design (Resolution V). Polish Journal of Environmental Studies, 26 (1), 47, 2017.
  • 4. RADU E., ION A.C., SIRBU F., ION I. Adsorption of endocrine disruptors on exfoliated graphene nanoplatelets. Environmental Engineering and Management Journal, 14 (3), 551, 2015.
  • 5. LAZIM Z.M., HADIBARATA T., PUTEH M.H., YUSOP Z. Adsorption characteristics of bisphenol A onto low-cost modified phyto-waste material in aqueous solution. Water, Air&SoilPollution, 226 (34), 1, 2015.
  • 6. WANG W., JIANG C., ZHU L., LIANG N., LIU X., JIA J., ZHANG C., ZHAI S., ZHANG B. Adsorption of bisphenol A to a carbon nanotube reduced its endocrine disrupting effect in mice male offspring. International Journal of Molecular Science, 15 (9), 15981, 2014.
  • 7. BALARAK D. Kinetics, isotherm and thermodynamics studies on Bisphenol A adsorption using Barley husk. International Journal of ChemTech Research, 9( 5), 681, 2016.
  • 8. AMADI M.T., SHOKOOHI R., POORMOHAMMADI A., AZARIAN G., HARATI M.,SHANESAZ A. Removal of bisphenol A using antimony nanoparticle multi-walled carbon nanotubes composite from aqueous solutions. Oriental Journal of Chemistry, 32 (2), 1015, 2016.
  • 9. BHATNAGAR A., ANASTOPOULOI A. Adsorptive removal of bisphenol a (BPA) from aqueous solution: A review. Chemosphere, 168, 885, 2017.
  • 10. MURUGESAN K., SALAM H.A., SIVARAJ R., VENCKATESH R. Detection of bisphenolA in various environment samples collected from Tamil Nadu, India by solid-phase extraction and GC analysis. Advances in Bioresearch, 4 (1), 59, 2013.
  • 11. NENG N.R., NOGUEIRA J.M.F. Determination of phenol compounds in surface water matrices by bar adsorptive microextraction-high performance liquid chromatography-diode array detection. Molecules, 19, 9369, 2014.
  • 12. MAUTER M.S., ELIMELECH M. Environmental applications of carbon-based nanomaterials. Environmental Science & Technology, 42 (16), 5843, 2008.
  • 13. KUO K.Y. Comparison with as-grown and microwave modified carbon nanotubes to removal aqueous bispheno l A. Desalination, 249, 976, 2009.
  • 14. HEO J., FLORA J.R.V., HER N., PARK, Y.G., CHO J., SON A., YOON Y. Removal of bisphenol A and 17β-estradiol in single walled carbon nanotubes-ultrafiltration (SWNTs -UF) membrane systems. Separation and Purification Technology, 90, 39, 2012.
  • 15. PAN B.D., LIN H., MASHAYEKHI B., XING B. Adsorption and hysteresis of bisphenol A and 17α-ethinyl estradiol on carbon nanomaterials. EnvironmentalScience &Technology, 42 (15), 5480, 2008.
  • 16. GOMA H.S., ALI, A. M., GUPTA V. K., HAMDY A. S., RAMIN M., MALLIKARJUNA S., NADAGOUDA N., SILLANPÄÄ M., MEGIEL E. The role of nanomaterials as effective adsorbents and their applications in wastewater treatment. Journal of Nanostructure in Chemistry, 7 (1), 1, 2017.
  • 17. ASUNCIÓN M.L., MENDIETA V.S., HERNÁNDEZ A.L.M., CASTAÑO V.M., SANTOS C.V. Adsorption of phenol from aqueous solutions by carbon nanomaterials of one and two dimensions: kinetic and equilibrium studies. Journal of Nanomaterials, 16 (1), 422, 2015.
  • 18. MARSH D.H., RANCE G.A., ZAKA M.H., WHITBY R.J., KHLOBYSTOV A.N. Comparison of the stability of multiwalled carbon nanotube dispersions in water. Physical Chemistry and Chemical Physics, 9, 5490, 2007.
  • 19. SHI Y., REN L., LI D., GAO H., YANG B. Optimization Conditions for Single-Walled Carbon Nanotubes Dispersion. Journal of Surface Engineered Materials and Advanced Technology, 3, 6, 2013.
  • 20. ZHAO J., WANG Z., GHOSH S., XING B. Phenanthrene binding by humic acid-protein complexes as studied by passive dosing technique. Environmental Pollution, 184, 145, 2014.
  • 21. YANG W.B., LU Y.P., ZHENG F.F. Removal and Adsorption of p-Nitrophenol from Aqueous Solutions Using Carbon Nanotubes and Their Composites. Chemical Engineering Journal, 179, 112, 2012.
  • 22. LIU X, WANG X.C., TAN F. Developments and Trends of Molecularly Imprinted Solid-Phase Microextraction. Analytica Chimica Acta, 727, 26, 2012.
  • 23. APUL O.G., WANG Q., ZHOU Y., KARANFIL T. Adsorption of aromatic organic contaminants by Graphene nanosheets: comparison with carbón nanotubes and activated carbon. Water Resources, 47, 1648, 2013.
  • 24. WU W., YANG K., CHEN W., ZHANG J., LIN D., XING B. Correlation and prediction of adsorption capacity and affinity of aromatic compounds on carbón nanotubes. Water Research, 88, 492, 2016.
  • 25. LIBBRECHT W., VANDAELE K., BUYSSER K., VERBERCKMOES A., THYBAUT J.W., POELMAN H., CLERCQ VAN DER VOORT J.P. Tuning the Pore Geometry of Ordered Mesoporous Carbons for Enhanced Adsorption of Bisphenol-A. Materials, 8, 1652, 2015.
  • 26. PHATTHANAKITIPHONG T., SEO G.T. Characteristic Evaluation of Graphene Oxide for Bisphenol A Adsorption in Aqueous Solution. Nanomaterials, 6, 128, 2016.
  • 27. XU J., ZHU Y. F. Elimination of Bisphenol A from Water via Graphene Oxide Adsorption. Acta Physico-ChimicaSinica, 29, 829, 2013.
Typ dokumentu
Identyfikator YADDA
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.