PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
2013 | 61 | 3 |
Tytuł artykułu

The suitability of zooplankton as lake ecosystem indicator: crustacean trophic state index

Warianty tytułu
Języki publikacji
EN
Abstrakty
EN
Industrial processes and the use of fertilizers are the main causes for the rapid eutrophication of lakes. Different indices, both chemical and biological, may be used to assess a level and a rate of the eutrophication process. Zooplankton indices can be among them, as zooplankton community structure is determined primarily by the physical and chemical environment and modified by biological interactions, i.e. predation and interspecific competition for food resources. Among biological indices of trophic state of lake, those based on densities and structure of crustacean communities seem to respond weaker. There are, however, patterns of crustacean communities connected with trophic state of lakes. Thus, an increase in trophic state causes: (1) an increase in the total numbers of crustaceans; (2) an increase in the total biomass of Cyclopoida; (3) an increase in the contribution of the biomass of Cyclopidae to the total crustacean biomass; (4) an increase in the ratio of the biomass of Cyclopoida to the biomass of Cladocera; (5) a decrease in the average body weight of Crustacea; (6) an increase in the ratio of Cladocera to Calanoida numbers; (7) an increase in the ratio of Cyclopoida to Calanoida numbers; (8) an increase in the dominance of species indicative of high trophy (Mesocyclops leuckartii, Thermocyclops oithonoides, Diaphanosoma brachyurum, Chydorus sphaericus, Bosmina (Eubosmina) coregoni thersites) in the numbers of all indicative species. Crustacean zooplankton was sampled at the deepest place in a lake at 1 m intervals from the surface to the bottom of epilimnion layer, and then samples were pooled together for the layer. Samples were taken once a year, during the summer stagnation. The material was collected from a total of 41 dimictic and 33 polymictic lakes within Masurian Lake District, Iława Lake District and Lubawa Upland. Among above-mentioned indices, six were the best correlated with trophic state of lakes. Below are formulas which enable to assess trophic state of lakes regardless of their mixis type (TSICR) from parameters of abundance and structure of crustacean communities: (1) TSICR1 = 25.5 N⁰‧¹⁴² (R² = 0.32), where TSI = trophic state index; N = numbers (ind. l⁻¹); (2) TSICR2 = 57.6 B⁰‧⁰⁸¹ (R² = 0.37), where B = biomass (mg w.wt. l⁻¹); (3) TSICR3 = 40.9 CB⁰‧⁰⁹⁷ (R² = 0.35), where CB = percentage of biomass of Cyclopoida in the total biomass of Crustacea (%); (4) TSICR4 = 58.3 (CY/CL)⁰‧⁰⁷¹ (R² = 0.30), where CY/ CL = ratio of the Cyclopoida biomass to the biomass of Cladocera (%); (5) TSICR5 = 5.08 Ln (CY/CA) + 46.6 (R² = 0.37), where CY/CA = ratio of Cyclopoida numbers to the numbers of Calanoida; (the relationship covering exclusively dimictic lakes); (6) TSICR6 = 43.8 e⁰‧⁰⁰⁴ (IHT) (R² = 0.30), where IHT = percentage of species indicative of high trophy in the indicative group’s numbers. It was assumed that the lakes with a TSICR under 45 are mesotrophic, those with a TSICR value of 45–55 are meso-eutrophic, those with a TSICR value of 55–65 – eutrophic and those with a TSICR above 65 – hypertrophic. Although crustacean indices of trophic state of lakes seem to be less useful than other biological indices, they may be recommended in assessing the quality of lake waters.
Wydawca
-
Rocznik
Tom
61
Numer
3
Opis fizyczny
p.561-573,fig.,ref.
Twórcy
  • Institute of Biology, University of Bialystok, Swierkowa 20B, 15-950 Bialystok, Poland
autor
  • Institute of Biology, University of Bialystok, Swierkowa 20B, 15-950 Bialystok, Poland
Bibliografia
  • Balushkina E.V., Vinberg G.G. 1979 – Dependences between mass and length of the body of plankton Crustacea (In General Basics of Research in Aquatic Ecosystems, Ed. G.G. Vinberg) – Nauka, Leningrad, pp. 169–172 (in Russian).
  • Bays J. S., Crisman T.L. 1983 – Zooplankton and Trophic State Relationships in Florida Lakes – Can. J. Fish. Aquat. Sci. 40: 1813–1819
  • Berzins B., Bertilsson J. 1989 – On limnic micro-crustaceans and trophic degree. Hydrobiologia, 185: 95–100.
  • Blancher E.C. 1984 – Zooplankton-trophic state relationships in some north and central Florida lakes – Hydrobiologia, 109: 251–263.
  • Bottrell H.M., Duncan A., Gliwicz Z.M., Grygierek E., Herzig A., Hillbricht-Ilkowska A., Kurosawa A., Larson P., Węgleńska T. 1976 – A review of some problems in zooplankton production studies – Norw. J. Zool. 24: 419–456.
  • Brodzińska B., Jańczak J., Kowalik A., Sziwa, R. 1999 – Atlas jezior Polski, tom III. [The atlas of Polish lakes, vol. 3] – Wydawnictwo Naukowe S.C. Poznań, pp. 1–240 (in Polish).
  • Carlson R.E. 1977 – Trophic state index for lakes – Limnol. Oceanogr. 22: 361–369.
  • Čeirāns A. 2007 – Zooplankton indicators of trophy in Latvian lakes – Acta Universitatis Latviensis, Biology, 723: 61–69
  • Drenner R.W., Smith J.D., Threlkeld S.T. 1996 – Lake trophic state and the limnological effects of omnivorous fish – Hydrobiologia, 319: 213–223.
  • Ejsmont-Karabin J. 2012 – The usefulness of zooplankton as lake ecosystem indicators: rotifer trophic state index – Pol. J. Ecol. 60: 339–350
  • Gliwicz M.Z. 1986 – Predation and the evolution of vertical migration in zooplankton – Nature, 320: 746 – 748
  • Gliwicz M.Z., Lampert W. 1990 – Food thresholds in Daphnia in the absence and presence of blue-green filaments – Ecology, 71: 691–702
  • Gulati R.D. 1983. Zooplankton and its grazing as indicators of trophic status in Dutch lakes – Environ. Monit. and Assess. 3: 343–354.
  • Hakkari L. 1972 – Zooplankton species as indicators of environment – Aqua Fennica, 1: 46–54.
  • Haney J.F. 1987 – Field studies on zooplanktoncyanobacteria interactions – New Zeal. Journ. Mar. and Freshw. Res. 21: 467–475
  • Hillbricht-Ilkowska A., Spodniewska I., Węgleńska T. 1979 – Changes in the phytoplankton-zooplankton relationship connected with the eutrophication of lakes – Symp. Biol. Hung. 19: 59–75.
  • Hofmann W. 1996 – Empirical relationships between cladoceran fauna and trophic state in thirteen northern German lakes: analysis of surficial sediments – Hydrobiologia, 318: 195–201.
  • Hsieh C.H., Sakai Y., Ban S., Ishikawa K., Ishikawa T., Ichise S., Yamamura N., Kumagai M. 2011 – Eutrophication and warming effects on long-term variation of zooplankton in Lake Biwa – Biogeosciences Discuss, 8: 593–629
  • Irvine K., Moss B., Stansfield J. 1990 – The potential of artificial refugia for maintaining acommunity of large-bodied Cladocera against fish predation in a shallow eutrophic lake – Hydrobiologia, 200/201: 379–389
  • Jekatieryńczuk-Rudczyk E., Grabowska M., Ejsmont-Karabin J., Karpowicz M. 2012 – Assessment of trophic state of four lakes in the Suwałki Landscape Park (NE Poland) based on the summer phyto- and zooplankton in comparison with some physicochemical parameters (In: Current advances in algal taxonomy and its applications, Eds: Wołowski K. et al.) – Instytut Botaniki im. W Szafera, Kraków 2012: 205–225
  • Jeppesen E., Jensen J.P., Jensen C., Faafeng B., Hessen D.O., Sondergaard M., Lauridsen T., Brettum P., Christoffersen C. 2003 – The impact of nutrient state and lake depth on top-down control in the pelagic zone of lakes: A Study of 466 Lakes from the temperate zone to the Arctic – Ecosystems, 6: 313–325
  • Jeppesen E., Jensen J.P., Sondergaard M., Lauridsen T., Landkildehus F. 2000 – Trophic structure, species richness and biodiversity in Danish lakes: changes along a phosphorus gradient – Freshw. Biol. 45: 201–218
  • Jumppanen K. 1976 – Effects of waste waters on a lake ecosystem – Ann. Zool. Fennici, 13: 85–138
  • Karabin A. 1985a – Pelagic zooplankton (Rotatoria + Crustacea) variation in the process of lake eutrophication. I. Structural and quantitative features – Ekol. pol. 33: 567–616.
  • Karabin A. 1985b – Pelagic zooplankton (Rotatoria + Crustacea) variation in the process of lake eutrophication. II. Modifying effect of biotic agents – Ekol. pol. 33: 617–644.
  • Karabin A., Ejsmont-Karabin J. 1992 – Zooplankton of Lake Wigry (In: Lakes of the Suwałki Landscape Park. State of eutrophication and measures of protection, Ed. B. Zdanowski ) – Zakł. Nar. im. Ossolińskich, Wyd. PAN, Wrocław–Warszawa–Kraków, pp. 101–113 (in Polish).
  • Karabin A., Ejsmont-Karabin J. 1993 – Zooplankton communities versus lake trophy in Suwałki Lanscape Park (North-eastern Poland) – Ekol. pol. 41: 237–268
  • Kufel L. 1999 – Dimictic versus polymictic Masurian lakes: similarities and differences in chlorophyll-nutrient-SD relationships – Hydrobiologia, 408/409: 389–394.
  • Lampert W. 1993 – Ultimate causes of diel vertical migration of zooplankton: New evidence for the predator-avoidance hypothesis – Arch. Hydrobiol. Beih. Ergebn. Limnol. 39: 79–88
  • Pace M.L. 1986 – An empirical analysis of zooplankton community size structure across lake trophic gradients – Limnol. Oceanogr. 31: 45–55.
  • Patalas K. 1972 – Crustacean plankton and the eutrophication of St. Lawrence Great Lakes – J. Fish. Res. Bd. Canada, 29: 1451–1462.
  • Paturej E. 2006 – Assessment of the trophic state of the coastal Lake Gardno based on community structure and zooplankton related indices – Electronic Journal of Polish Agricultural Universities, Biology, 9: 1–12
  • Pejler B. 1965 – Regional-ecological studies of Swedish fresh-water zooplankton – Zool. Bidrag. Uppsala, 36: 407–515.
  • Piasecki W.G., Wolska M. 2007 – Pelagic zooplankton as an indicator of Lake Pełcz Westpomerania, Poland) trophic state – Limnological Review, 7: 213–218.
  • Pinto-Coelho R.M., Bezerra-Neto J.F., Morais Jr C.A. 2005a – Effects of eutrophication on size and biomass of crustacean zooplankton in a tropical reservoir – Brazilian J. Biol. 65: 325–338
  • Pinto-Coelho R., Pinel-Alloul B., Méthot G., Havens K.E. 2005b – Crustacean zooplankton in lakes and reservoirs of temperate and tropical regions: variation with trophic status – Can. J. Fish. Aquat. Sci. 62: 348–361.
  • Porter K.G., McDonough R. 1984 – The energetic cost of response to blue-green algal filaments by cladocerans – Limnol. Oceanogr. 29: 365–369.
  • Ramcharan C.W., McQueen D.J., Demers E., Popiel S.A., Rocchi A.M., Yan N.D., Wong A.H., Hughes K.D. 1995. A comparative approach to determining the role of fish predation in structuring limnetic ecosystems – Arch. Hydrobiol. 133: 389–416
  • Scheffer M. 2001 – Alternative attractors of shallow lakes – The Scientific World, 1: 254–263.
  • Stansfield J., Perrow M.R., Tench L.D., Jowitt A.J.D., Taylor A.A.L. 1997 – Submerged macrophytes as refuges for grazing Cladocera against fish predation: observations on seasonal changes in relation to macrophyte cover and predation pressure – Hydrobiologia 342/343: 229–240.
  • Webster K.E., Peters R.H. 1978 – Some size-dependent inhibition of larger cladocerans filter in filamentous suspensions – Limnol. Oceanogr. 23: 1238–1245.
Typ dokumentu
Bibliografia
Identyfikatory
Identyfikator YADDA
bwmeta1.element.agro-4a979e4f-569c-44a7-910f-542b195b3ea2
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.