Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
2016 | 61 | 3 |
Tytuł artykułu

A new type of shell malformation caused by epizoans in Late Jurassic ammonites from Central Russia

Treść / Zawartość
Warianty tytułu
Języki publikacji
A new type of shell damage on Late Jurassic ammonite Kachpurites fulgens is described. The new type of shell malformation consists of small elongated pits, arranged in groups on the surface of ammonite shell and concentrated near the terminal aperture. The examination of the pits demonstrated no signs of drilling, biting, or healing of punctures. The shell layers in the pits are bent downward without changing in thickness. At the same time the pits, in some cases, significantly distort the shape of the shell walls. Deformed growth lines are associated with some of the pits. All of this supports the hypothesis that the pits had been formed by epifauna located at a flexible uncalcified part of the periostracum in the apertural region of the growing ammonite shell. It is likely that epizoan attachment led to the deformation of the thin periostracum film and to the distortion of the growing shell wall. The nature of epizoans is discussed, but remains unclear due to their rather poor preservation. The relationship between epizoans and ammonites is also an open question: they could have been parasites, but other types of biotic relationships cannot be entirely ruled out.
Słowa kluczowe
Opis fizyczny
  • Akpan, F.B., Farrow, G.E., and Morris, N. 1982. Limpet grazing on Cretacous algal-bored ammonites. Palaeontology 25: 361−367.
  • Andrew, C., Howe, P., Paul, C.R.C., and Donovan, S.K. 2011. Epifaunal worm tubes on Lower Jurassic (Lower Lias) ammonites from Dorset. Proceedings of the Geologists’ Association 122: 34−46.
  • Bizikov, V.A. 2002. Reanalysis of functional design of Nautilus locomotory and respiratory system. American Malacological Bulletin 17: 17–30.
  • Checa, A. 1994. A model for the morphogenesis of ribs in ammonites inferred from associated microsculptures. Palaeontology 37: 863−888.
  • Checa, A.G., Okamoto, T., and Keupp, H. 2002. Abnormalities as natural experiments: a morphogenetic model for coiling regulation in planispiral ammonites. Paleobiology 28: 127−138.
  • Cressey, R. and Boxshall, G.A. 1989. Kabatarina pattersoni, a fossil parasitic copepod (Dichelesthiidae) from a Lower Cretaceous fish. Micropaleontology 35: 150–167.
  • Cressey, R. and Patterson, C. 1973. Fossil parasitic copepods from a lower Cretaceous fish. Science 180: 1283–1285.
  • Davis, R.A., Mapes, R.H., and Klofak, S.M. 1999. Epizoa on externally shelled cephalopods. In: A.Yu. Rozanov and A.A. Shevyrev (eds.), Fossil Cephalopods: Recent Advances in Their Study, 32−51. Paleontological Institute of Russian Academy of Sciences, Moscow.
  • De Baets, K., Keupp, H., and Klug, C. 2015. Parasites of ammonoids. In: C. Klug, D. Korn, K. De Baets, I. Kruta, and R.H. Mapes (eds.), Ammonoid Paleobiology: From Anatomy to Ecology, 837−875. Springer, Dordrecht.
  • De Baets, K., Klug, C., and Korn, D. 2011. Devonian pearls and ammonoid endoparasite co-evolution. Acta Palaeontologica Polonica 56: 159–180.
  • De Baets, K., Klug, C., Korn, D., Bartels, C., and Poschmann, M. 2013. Emsian Ammonoidea and the age of the Hunsrück Slate (Rhenish Mountains, Western Germany). Palaeontographica A 299: 1−113.
  • Doguzhaeva, L.A. and Mutvei, H. 1991. Organization of the soft body in Aconeceras (Ammonitina), interpreted on the basis of shell morphology and muscle scars. Palaeontographica Abteilung A 218: 17–33.
  • Doguzhaeva, L.A. and Mutvei, H. 1993. Structural features of Cretaceous ammonoids indicative of semi- internal or internal shells. In: M.R. House (ed.), The Ammonoidea: Environment, Ecology, and Evolutionary Change. Systematics Association Special Volume 47: 99–114.
  • Drushchits, V.V. [Druŝic, V.V.] and Zevina, G.B. 1969. New Lower Cretaceous cirripedes from the Northern Caucasus [in Russian]. Paleontologičeskij žurnal 3: 214−224.
  • Ho, J.S. 1980. Anchicaligus nautili (Willey), a caligid copepod parasitic on Nautilus in Palau, with discussion of Caligulina Heegaard, 1972. Publications of the Seto Marine Biological Laboratory 25: 157−165.
  • Houša, V., Pruner, P., Zakharov, V.A., Kostak, M., Chadima, M., Rogov, M.A., Šlechta, S., and Mazuch, M. 2007. Boreal-Tethyan correlation of the Jurassic−Cretaceous boundary interval by magneto- and biostratigraphy. Stratigraphy and Geological Correlation 15: 297–309.
  • House, M.R. 1960. Abnormal growths in some Devonian goniatites. Palaeontology 3: 129–136.
  • Hengsbach, R. 1996. Ammonoid pathology. In: N.H. Landman, K. Tanabe, and R.A. Davis (eds.), Ammonoid Paleobiology. Topics in Geobiology 13: 581−605. Plenum Press, New York.
  • Ifrim, C., Vega, F.J., and Stinnesbeck, W. 2011. Epizoic stramentid cirripedes on ammonites from Late Cretaceous platy limestones in Mexico. Journal of Paleontology 85: 524−536.
  • Kase, T., Johnston, P.A., Seilacher, A., and Boyce, J.B. 1998. Alleged mosasaur bite marks on Late Cretaceous ammonites are limpet (patellogastropod) home scars. Geology 26: 947−950.
  • Kase, T., Shigeta, Y., and Futakami, M. 1994. Limpet home depressions in Cretaceous ammonites. Lethaia 27: 49−58.
  • Keupp, H. 1986. Perlen (Schalenkonkretionen) bei Dactylioceraten aus dem fränkischen Lias. Natur und Mensch 1986: 97−102.
  • Keupp, H. 2000. Ammoniten. Paläobiologische Erfolgsspiralen. 165 pp. Thorbecke Species, Stuttgart.
  • Keupp, H. 2006. Sublethal punctures in body chambers of Mesozoic ammonites (forma aegrafenestra n. f.), a tool to interpret synecological relationships, particularly predator-prey interactions. Paläontologische Zeitschrift 80: 112−123.
  • Keupp, H. 2012. Atlas zur Paläopathologie der Cephalopoden. Berliner Paläobiologische Abhandlungen 12: 1–392.
  • Klug, C., Korn, D., Richter, U., and Urlichs, M. 2004. The black layer in cephalopods from the German Muschelkalk (Middle Triassic). Palaeontology 47: 1407–1425.
  • Kruta, I., Landman, N.H., Rouget, I., Cecca, F., and Tafforeau, P. 2011. The role of ammonites in the Mesozoic marine food web revealed by exceptional jaw preservation. Science 331: 70–72.
  • Kulicki, C., Tanabe, K., Landman, N.H., and Mapes, R.H. 2001. Dorsal shell wall in ammonoids. Acta Palaeontologica Polonica 46: 23−42.
  • Landman, N.H., Cobban, W.A., and Larson, N.L. 2012. Mode of life and habitat of scaphitid ammonites. Geobios 45: 87–98.
  • Larson, N.L. 2007. Deformities in the Late Callovian (Late Middle Jurassic) Ammonite Fauna from Saratov, Russia. In: N.H. Landman, R.A. Davis, and R.H. Mapes (eds.), Cephalopods—Present and Past: New Insights and Fresh Perspectives, 344−374. Springer, Dordrecht.
  • Mironenko, A.A. 2012. Traces of lifetime damage on the shells of Upper Jurassic (Upper Volgian) Kachpurites (Craspeditidae, Ammonoidea) [in Russian, with English abstract]. In: T.B. Leonova, I.S. Barskov, and V.V. Mitta (eds.), Contributions to Current Cephalopod Research: Morphology, Systematics, Evolution, Ecology and Biostratygraphy, Proceeding of Conference (Moscow, 9–11 April, 2012), 109−111. Borissiak Paleontological Institute RAS, Moscow.
  • Mironenko, A.A. 2014a. Discovery of the jaw apparatus of the Upper Volgian ammonite Kachpurites fulgens (Craspeditidae). Paleontological Journal 48: 580–586.
  • Mironenko, A.A. 2014b. Soft-tissue preservation in Jurassic ammonites from Central Russia. In: C. Klug and D. Fuchs (eds.), Cephalopods—Present and Past 9, and Coleoids Through Time 5, Zürich 2014. Abstracts and Program, 68. Paläontologisches Institut und Museum, Universität Zürich, Zürich.
  • Mironenko, A.A. 2015. The soft-tissue attachment scars in Late Jurassic ammonites from Central Russia. Acta Palaeontologica Polonica 60: 981−1000.
  • Mitta, V.V. 2010. Late Volgian Kachpurites Spath (Craspeditidae, Ammonoidea) of the Russian Platform. Paleontological Journal 44: 622–631.
  • Mitta, V.V., Michailova, I.A., and Sumin, D.L. 1999. Unusual Volgian scaphi toid ammonites from Central Russia. Paleontological Journal 6: 13–17.
  • Moulton, D.E., Goriely, A., and Chirat, R. 2015. The morpho-mechanical basis of ammonite form. Journal of Theoretical Biology, 364: 220−230.
  • Rogov, M.A. 2010. New Data on ammonites and stratigraphy of the Volgian Stage in Spitsbergen. Stratigraphy and Geological Correlation 18: 505–531.
  • Rogov, M. 2014a. Infrazonal subdivision of the Volgian Stage in its type area using ammonites and correlation of the Volgian and Tithonian Stages. In: R. Rocha, J. Pais, J.C. Kullberg, and S. Finney (eds.), STRATI 2013. First International Congress on Stratigraphy. At the Cutting Edge of Stratigraphy, 577−580. Springer International Publishing, Zürich.
  • Rogov, M.A. 2014b. Khetoceras (Craspeditidae, Ammonoidea)—a new genus from the Volgian stage of northern Middle Siberia, and parallel evolution of Late Volgian boreal ammonites. Paleontological Journal 48: 457–464.
  • Rogov, M.A. and Starodubtseva, I.A. [Starodubceva, I.A.] 2014. The Khoroshevo section (Moscow), “Palaeontological Klondike” of XIX century, and its significance for studying of ammonites and stratigraphy of Volgian Stage [in Russian, with English abstract]. Bûlleten’ Moskovskogo obŝestva ispitatelej prirody. Otdel geogičeskij 89 (5): 16−33.
  • Saunders, W.B., Spinosa, C., and Davis, L.E. 2010. Predation on Nautilus. In: B.W. Saunders and N.H. Landman (eds.), Nautilus: The Biology and Paleobiology of a Living Fossil, Reprint with Additions. Topics in Geobiology 6: 201–215.
  • Seilacher, A. 1960. Epizoans as a key to ammonoid ecology. Journal of Paleontology 34: 189–193.
  • Seilacher, A. 1998. Mosasaurs, limpets or diagenesis: how Placenticeras shells got punctured. Mitteilungen aus dem Museum für Naturkunde in Berlin—Geowissenschaftliche Reihe 1: 93–102.
  • Selden, P.A., Huys, R., Stephenson, M.H., Heward, A.P., and Taylor, P.N. 2010. Crustaceans from bitumen clast in Carboniferous glacial diamictite extend fossil record of copepods. Nature Communications 1: 50.
  • Seltzer, V.B. 2001. About anomal shells of the Callovian ammonites [in Russian]. Trudy naučno-issledovatel’skogo Instituta geologii Saratovskogo gosudarstvennogo Universiteta im. N.G. Černyševskogo. Novaâ seriâ 8: 29−45.
  • Seuss B., Wisshak M., Mapes R.H., and Landman N.H. 2015. Syn-vivo bioerosion of Nautilus by endo- and epilithic foraminiferans (New Caledonia and Vanuatu). PLoS ONE 10 (4): e0125558.
  • Schindewolf, O. 1968. Analyse eines Ammoniten-Gehäuses. Akademie der Wissenschaften und der Literatur, Abhandlungen der Mathematisch - Naturwissenschaftlichen Klasse in Mainz 8: 139–188.
  • Ward, P.D. and Saunders, W.B. 1997. Allonautilus: A new genus of living nautiloid cephalopod and its bearing on phylogeny of the Nautilida. Journal of Paleontology 71: 1054−1064.
Typ dokumentu
Identyfikator YADDA
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.