PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników

Czasopismo

2018 | 77 | 2 |

Tytuł artykułu

Memory and forgetting processes with the firing neuron model

Warianty tytułu

Języki publikacji

EN

Abstrakty

EN
The aim of this paper is to present a novel algorithm for learning and forgetting within a very simplified, biologically derived model of the neuron, called firing cell (FC). FC includes the properties: (a) delay and decay of postsynaptic potentials, (b) modification of internal weights due to propagation of postsynaptic potentials through the dendrite, (c) modification of properties of the analog weight memory for each input due to a pattern of long-term synaptic potentiation. The FC model could be used in one of the three forms: excitatory, inhibitory, or receptory (ganglion cell). The computer simulations showed that FC precisely performs the time integration and coincidence detection for incoming spike trains on all inputs. Any modification of the initial values (internal parameters) or inputs patterns caused the following changes of the interspike intervals time series on the output, even for the 10 s or 20 s real time course simulations. It is the basic evidence that the FC model has chaotic dynamical properties. The second goal is the presentation of various nonlinear methods for analysis of a biological time series. (Folia Morphol 2018; 77, 2: 221–233)

Słowa kluczowe

Wydawca

-

Czasopismo

Rocznik

Tom

77

Numer

2

Opis fizyczny

p.221–233,fig.,ref.

Twórcy

autor
  • Intrafaculty College of Medical Informatics and Biostatistics, Medical University of Gdansk, Debinki 1, 80–211 Gdask, Poland
autor
  • Department of Anatomy and Neurobiology, Medical University of Gdansk, Gdansk, Poland
autor
  • Department of Periodontology and Oral Mucosa Diseases, Medical University of Gdansk, Gdansk, Poland
autor
  • Department of Periodontology and Oral Mucosa Diseases, Medical University of Gdansk, Gdansk, Poland

Bibliografia

  • 1. Babinec P, Kučera M, Babincová M. Global characterization of time series using fractal dimension of corresponding recurrence plots: from dynamical systems to heart physiology. Harmon Fractal Image Anal. 2005; 1: 87–93.
  • 2. Barrio R, Martínez MA, Serrano S, et al. Macro- and micro-chaotic structures in the Hindmarsh-Rose model of bursting neurons. Chaos. 2014; 24(2): 023128, doi: 10.1063/1.4882171, indexed in Pubmed: 24985442.
  • 3. Bialowas J, Grzyb B, Poszumski P. Firing Cell: An Artificial Neuron with Long-Term Synaptic Potentiation Capacity. 2005 International Conference on Neural Networks and Brain. 2005; 3, doi: 10.1109/icnnb.2005.1614874.
  • 4. Bialowas J, Grzyb B, Poszumski P. Firing cell: an artificial neuron with a simulation of long-term-potentiationrelated memory. ISAROB. 2005; 11: 731–734.
  • 5. Bliss TVP, Collingridge GL, Morris RGM. Synaptic plasticity in health and disease: introduction and overview. Philos Trans R Soc Lond B Biol Sci. 2014; 369(1633): 20130129, doi: 10.1098/rstb.2013.0129, indexed in Pubmed: 24298133.
  • 6. Bliss TV, Collingridge GL. A synaptic model of memory: long-term potentiation in the hippocampus. Nature. 1993; 361(6407): 31–39, doi:10.1038/361031a0, indexed in Pubmed: 8421494.
  • 7. Bliss T, Lømo T. Long-lasting potentiation of synaptic transmission in the dentate area of the anaesthetized rabbit following stimulation of the perforant path. J Physiol. 1973; 232(2): 331–356, doi: 10.1113/jphysiol.1973.sp010273, indexed in Pubmed: 4727084.
  • 8. Borges RR, Borges FS, Lameu EL, et al. Effects of the spike timing-dependent plasticity on the synchronisation in a random Hodgkin–Huxley neuronal network. Commun Nonlinear Sci Numer Simul. 2016; 34: 12–22, doi: 10.1016/j.cnsns.2015.10.005.
  • 9. Bower JM, Beeman D. The Book of Genesis — Exploring Realistic Neural Models with the GEneral NEural SImulation System. Genesis. 2003; 2003, doi:10.1016/S1364-6613(02)01915-0, indexed in Pubmed: 300835.
  • 10. Brea J, Gerstner W. Does computational neuroscience need new synaptic learning paradigms? Curr Opin Behav Sci. 2016; 11: 61–66, doi:10.1016/j.cobeha.2016.05.012.
  • 11. Brette R, Rudolph M, Carnevale T, et al. Simulation of networks of spiking neurons: a review of tools and strategies. J Comput Neurosci. 2007; 23(3): 349–398, doi: 10.1007/s10827-007-0038-6, indexed in Pubmed: 17629781.
  • 12. Buonomano DV, Maass W. State-dependent computations: spatiotemporal processing in cortical networks. Nat Rev Neurosci. 2009; 10(2): 113–125, doi: 10.1038/nrn2558, indexed in Pubmed: 19145235.
  • 13. Clopath C, Büsing L, Vasilaki E, et al. Connectivity reflects coding: a model of voltage-based STDP with homeostasis. Nat Neurosci. 2010; 13(3): 344–352, doi: 10.1038/nn.2479, indexed in Pubmed: 20098420.
  • 14. Clopath C, Ziegler L, Vasilaki E, et al. Tag-trigger-consolidation: a model of early and late long-term-potentiation and depression. PLoS Comput Biol. 2008; 4(12): e1000248, doi: 10.1371/journal.pcbi.1000248, indexed in Pubmed: 19112486.
  • 15. Diano M, Tamietto M, Celeghin A, et al. Dynamic changes in amygdala psychophysiological connectivity reveal distinct neural networks for facial expressions of basic emotions. Sci Rep. 2017; 7: 45260, doi: 10.1038/srep45260, indexed in Pubmed: 28345642.
  • 16. Duch W. Therapeutic implications of computer models of brain activity for Alzheimer disease. JMIT. 2000; 5: 27–34.
  • 17. Duch W. Computational models of dementia and neurological problems. Methods Mol Biol. 2007; 401: 305–336, doi: 10.1007/978-1-59745-520-6_17, indexed in Pubmed: 18368373.
  • 18. Feldman DE. The spike-timing dependence of plasticity. Neuron. 2012; 75(4): 556–571, doi: 10.1016/j.neuron.2012.08.001, indexed in Pubmed:22920249.
  • 19. Finkel L. Neuroengineering Models of Brain Disease. Annu Rev Biomed Eng. 2000; 2(1): 577–606, doi: 10.1146/annurev.bioeng.2.1.577, indexed in Pubmed: 11701524.
  • 20. George D, Hawkins J. Towards a mathematical theory of cortical micro-circuits. PLoS Comput Biol. 2009; 5(10): e1000532, doi:10.1371/journal.pcbi.1000532, indexed in Pubmed: 19816557.
  • 21. Gerstner W, Kistler WM. Spiking neuron models: single neurons, populations. Plasticity. Book. 2002; 494, doi: 10.2277/0511075065, indexed in Pubmed: 12443231.
  • 22. Grzyb B, Bialowas J. Modeling of LTP-related phenomena using an artificial firing cell. Lecture Notes in Computer Science. 2006; 4232: 90–96.
  • 23. Hasselmo ME, McClelland JL. Neural models of memory. Curr Opin Neurobiol. 1999; 9(2): 184–188, indexed in Pubmed: 10322183.
  • 24. Hendrickson P, Yu G, Song D, et al. Interactions between inhibitory interneurons and excitatory associational circuitry in determining spatio-temporal dynamics of hippocampal dentate granule cells: a large-scale computational study. Front Syst Neurosci. 2015; 9, doi: 10.3389/fnsys.2015.00155, indexed in Pubmed: 26635545.
  • 25. Hines M. A program for simulation of nerve equations with branching geometries. Int J Biomed Comput. 1989; 24(1): 55–68, doi: 10.1016/0020-7101(89)90007-x, indexed in Pubmed: 2714879.
  • 26. Hodgkin AL, Huxley AFA. Quantitative description of membrane current and its application to conduction and excitation in nerves. J Physiol. 1952; 117: 500–554, doi: 10.1016/S0092-8240(05)80004-7, indexed in Pubmed: 12991237.
  • 27. Izhikevich EM. Which model to use for cortical spiking neurons? IEEE Trans Neural Netw. 2004; 15(5): 1063–1070, doi: 10.1109/TNN.2004.832719, indexed in Pubmed: 15484883.
  • 28. Kang DH, Jun HG, Ryoo KC, et al. Emulation of spike-timing dependent plasticity in nano-scale phase change memory. Neurocomputing. 2015; 155: 153–158, doi: 10.1016/j.neucom.2014.12.036.
  • 29. Kasabov N. To spike or not to spike: a probabilistic spiking neuron model. Neural Netw. 2010; 23(1): 16–19, doi: 10.1016/j.neunet.2009.08.010, indexed in Pubmed: 19783402.
  • 30. Korn H, Faure P. Is there chaos in the brain? II. Experimental evidence and related models. Comptes Rendus Biol. 2003; 326(9): 787–840, doi:10.1016/j.crvi.2003.09.011, indexed in Pubmed: 14694754.
  • 31. Kreuz T, Haas JS, Morelli A, et al. Measuring spike train synchrony. J Neurosci Methods. 2007; 165(1): 151–161, doi: 10.1016/j.jneumeth.2007.05.031, indexed in Pubmed: 17628690.
  • 32. La Barbera S, Vuillaume D, Alibart F. Filamentary switching: synaptic plasticity through device volatility. ACS Nano. 2015; 9(1): 941–949, doi:10.1021/nn506735m, indexed in Pubmed: 25581249.
  • 33. Langenbeck B. Geräuschaudiometrische Diagnostik. Die Absolutauswertung: Archiv für 0hren-, Nasen- und Kehlkopf-Heilkunde. 1950; 158: 458–471.
  • 34. Llorens-Martin M, Blazquez-Llorca L, Benavides-Piccione R, et al. Selective alterations of neurons and circuits related to early memory loss in Alzheimer’s disease. Front Neuroanat. 2014; 8, doi: 10.3389/fnana.2014.00038, indexed in Pubmed: 24904307.
  • 35. Malenka RC, Bear MF. LTP and LTD: an embarrassment of riches. Neuron. 2004; 44(1): 5–21, doi: 10.1016/j.neuron.2004.09.012, indexed in Pubmed:15450156.
  • 36. Marwan N, Carmen Romano M, Thiel M, et al. Recurrence plots for the analysis of complex systems. Physics Reports. 2007; 438(5-6): 237–329, doi:10.1016/j.physrep.2006.11.001, indexed in Pubmed: 18291439.
  • 37. Mohemmed A, Schliebs S, Matsuda S, et al. Span: spike pattern association neuron for learning spatio-temporal spike patterns. Int J Neural Syst. 2012; 22(4): 1250012, doi: 10.1142/S0129065712500128, indexed in Pubmed: 22830962.
  • 38. Morie T, Matsuura T, Nagata M, et al. A multinanodot floating-gate MOSFET circuit for spiking neuron models. IEEE Transactions On Nanotechnology. 2003; 2(3): 158–164, doi: 10.1109/tnano.2003.817221.
  • 39. Nagornov R, Osipov G, Komarov M, et al. Mixed-mode synchronization between two inhibitory neurons with postinhibitory rebound. Commun Nonlinear Sci Numer Simul. 2016; 36: 175–191, doi: 10.1016/j.cnsns.2015.11.024.
  • 40. Nobukawa S, Nishimura H, Yamanishi T. Chaotic Resonance in Typical Routes to Chaos in the Izhikevich Neuron Model. Sci Rep. 2017; 7(1): 1331, doi:10.1038/s41598-017-01511-y, indexed in Pubmed: 28465524.
  • 41. Nobukawa S, Nishimura H, Yamanishi T, et al. Analysis of Chaotic Resonance in Izhikevich Neuron Model. PLoS One. 2015; 10(9): e0138919, doi:10.1371/journal.pone.0138919, indexed in Pubmed: 26422140.
  • 42. Nowotny T, Rabinovich MI, Abarbanel HDI. Spatial representation of temporal information through spiketiming-dependent plasticity. Phys Rev E Stat Nonlin Soft Matter Phys. 2003; 68(1 Pt 1): 011908, doi: 10.1103/PhysRevE.68.011908, indexed in Pubmed: 12935177.
  • 43. Pereira A, Ferreira Almada L. Conceptual spaces and consciousness: integrating cognitive and affective processes. Int J Mach Conscious. 2011; 03(01): 127–143, doi: 10.1142/s1793843011000649.
  • 44. Raymond CR. LTP forms 1, 2 and 3: different mechanisms for the “long” in long-term potentiation. Trends Neurosci. 2007; 30(4): 167–175, doi:10.1016/j.tins.2007.01.007, indexed in Pubmed: 17292975.
  • 45. Saïghi S, Mayr C, Serrano-Gotarredona T, et al. Plasticity in memristive devices for spiking neural networks. Front Neurosci. 2015; 9, doi:10.3389/fnins.2015.00051, indexed in Pubmed: 25784849.
  • 46. Segundo J. Nonlinear dynamics of point process systems and data. Int J Bifurc Chaos. 2003; 13(08): 2035–2116, doi: 10.1142/s0218127403007886.
  • 47. Shen L, Wang M, Shen R. Affective e-Learning: Using “emotional” data to improve learning in pervasive learning environment related work and the pervasive e-learning platform. Educ Technol Soc. 2009; 12: 176–189.
  • 48. Shibata T, Ohmi T. An intelligent MOS transistor featuring gate-level weighted sum and threshold operations. International Electron Devices Meeting [Technical Digest]. IEDM. 1991 : 919–922, doi: 10.1109/iedm.1991.235276.
  • 49. Shibata T, Ohmi T. Neuron MOS binary-logic integrated circuits. I. Design fundamentals and soft-hardware-logic circuit implementation. IEEE Transactions on Electron Devices. 1993; 40(3): 570–576, doi: 10.1109/16.199362.
  • 50. Siekmeier PJ, Hasselmo ME, Howard MW, et al. Modeling of context-dependent retrieval in hippocampal region CA1: implications for cognitive function in schizophrenia. Schizophr Res. 2007; 89(1-3): 177–190, doi: 10.1016/j.schres.2006.08.007, indexed in Pubmed: 17055702.
  • 51. Sikora MA, Gottesman J, Miller RF. A computational model of the ribbon synapse. J Neurosci Methods. 2005; 145(1-2): 47–61, doi:10.1016/j.jneumeth.2004.11.023, indexed in Pubmed: 15922025.
  • 52. Sjöström PJ, Rancz EA, Roth A, et al. Dendritic excitability and synaptic plasticity. Physiol Rev. 2008; 88(2): 769–840, doi: 10.1152/physrev.00016.2007, indexed in Pubmed: 18391179.
  • 53. Softky W. Sub-millisecond coincidence detection in active dendritic trees. Neuroscience. 1994; 58(1): 13–41, doi: 0.1016/0306-4522(94)90154-6, indexed in Pubmed: 8159289.
  • 54. Traub RD, Contreras D, Cunningham MO, et al. Singlecolumn thalamocortical network model exhibiting gamma oscillations, sleep spindles, and epileptogenic bursts. J Neurophysiol. 2005; 93(4): 2194–2232, doi: 10.1152/jn.00983.2004, indexed in Pubmed: 15525801.
  • 55. Uhlhaas PJ, Singer W. Neural synchrony in brain disorders: relevance for cognitive dysfunctions and pathophysiology. Neuron. 2006; 52(1): 155–168, doi: 10.1016/j.neuron.2006.09.020, indexed in Pubmed: 17015233.
  • 56. Xu Nl. Coincidence detection of synaptic inputs is facilitated at the distal dendrites after long-term potentiation induction. J Neurosci. 2006; 26(11): 3002–3009, doi: 10.1523/jneurosci.5220-05.2006, indexed in Pubmed: 16540578

Typ dokumentu

Bibliografia

Identyfikatory

ISBN
10.5603/FM.a2018.0043

Identyfikator YADDA

bwmeta1.element.agro-4a2c9b92-e89e-41a9-8168-530179750144
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.