PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
2012 | 63 | 3 |

Tytuł artykułu

Toksykologia współczesna nanomateriałów magnetycznych

Treść / Zawartość

Warianty tytułu

EN
Modern toxicology of magnetic nanomaterials

Języki publikacji

PL

Abstrakty

PL
Aktualny postęp w zakresie nanobiotechnologii doprowadził do rozwoju nowego obszaru nanomedycyny, związanego z aplikacją nano(bio)materiałów zarówno w celach diagnostycznych jak i terapeutycznych (teranostyki). Główne oczekiwania i wyzwania w powyższym zakresie dotyczą nanoproduktów magnetycznych, otrzymywanych metodami bioinżynierii, o potencjalnym zastosowaniu w transporcie leków, przede wszystkim leków przeciwnowotworowych, stosowanych w terapiach wykorzystujących określone molekularne punkty uchwytu. Wyjątkowe właściwości fizykochemiczne nanocząstek magnetycznych rokują nadzieję na rozwój współczesnej nanomedycyny nowotworów, stanowiąc między innymi technologiczny przełom w zakresie celowanego transportu leków i genów, terapii nowotworów z wykorzystaniem magnetycznej hipertermii, inżynierii tkankowej, znakowania komórek nowotworowych czy molekularnego obrazowania rezonansem magnetycznym. Wraz z szerokim zainteresowaniem magnetycznymi nanoproduktami bioinżynierii, w sferze szczególnej uwagi pozostaje ich potencjał toksyczny. Pokaźna ilość dotychczasowych dowodów naukowych sugeruje, że pewne właściwości nanocząstek magnetycznych (np. podwyższona aktywność powierzchniowa, zdolność do penetracji przez błony komórkowe, oporność na procesy biodegradacji) może zwiększać ich potencjał cytotoksyczny w porównaniu z odpowiadającymi im materiałami nieposiadającymi rozmiarów w nanoskali. Innymi słowy, ocena bezpieczeństwa przeprowadzona w odniesieniu do standardowych materiałów magnetycznych, może mieć ograniczone zastosowanie w ocenie ryzyka narażenia zdrowotnego i środowiskowego w przypadku nowych nanoproduktów magnetycznych otrzymanych metodami bioinżynierii. W niniejszym artykule dyskutujemy główne kierunki badawcze prowadzone w doświadczalnych modelach in vitro oraz in vivo w celu oceny toksyczności magnetycznych nanozwiązków, zwracając szczególną uwagę na problematykę analizy toksykologicznej nanomagnetyków. W pracy zaprezentowano ponadto nowe kierunki badawcze prowadzone na polu nanotoksykologii, podkreślając znaczenie rozwoju alternatywnych metod testowania magnetycznych nano(bio)produktów.
EN
Current advances in nanobiotechnology have led to the development of new field of nanomedicine, which includes many applications of nano(bio)materials for both diagnostic and therapeutic purposes (theranostics). Major expectations and challenges are on bioengineered magnetic nanoparticles when their come to delivering drug compounds, especially to targeting anticancer drugs to specific molecular endpoints in cancer therapy. The unique physicochemical properties of these nanoparticles offer great promise in modern cancer nanomedicine to provide new technological breakthroughs, such as guided drug and gene delivery, magnetic hyperthermia cancer therapy, tissue engineering, cancer cell tracking and molecular magnetic resonance imaging. Along with the expanding interest in bio-engineered magnetic nanoproducts their potential toxicity has become one of the major concerns. To date, a number of recent scientific evidences suggest that certain properties of magnetic nanoparticles (e.g., enhanced reactive area, ability to cross cell membranes, resistance to biodegradation) may amplify their cytotoxic potential relative to bulk non-nanoscale counterparts. In other words, safety assessment developed for ordinary magnetic materials may be of limited use in determining the health and environmental risks of the novel bio-engineered magnetic nanoproducts. In the present paper we discuss the main directions of research conducted to assess the toxicity of magnetic nanocompounds in experimental in vitro and in vivo models, pointing to the key issues concerning the toxicological analysis of magnetic nanomaterials. In addition new research directions of nanotoxicological studies elucidating the importance of developing alternative methods for testing magnetic nano(bio)products are also presented.

Wydawca

-

Rocznik

Tom

63

Numer

3

Opis fizyczny

s.247-256,fot.,bibliogr.

Twórcy

  • Katedra i Zakład Toksykologii, Wydział Farmaceutyczny, Warszawski Uniwersytet Medyczny, ul.Banacha 1, 02-097 Warszawa
  • Katedra i Zakład Toksykologii, Wydział Farmaceutyczny, Warszawski Uniwersytet Medyczny, ul.Banacha 1, 02-097 Warszawa

Bibliografia

  • 1. Ahamed M, Akhtar MJ, Siddiqui MA, Ahmad J, Musarrat J, Al-Khedhairy AA, AlSalhi MS, Alrokayan SA.: Oxidative stress mediated apoptosis induced by nickel ferrite nanoparticles in cultured A549 cells. Toxicology 2011, 283, 101-108.
  • 2. Apopa PL, Qian Y, Shao R, Guo NL, Schwegler-Berry D, Pacurari M, Porter D, Shi X, Vallyathan V, Castranova V, Flynn DC.: Iron oxide nanoparticles induce human microvascular endothelial cell permeability through reactive oxygen species production and microtubule remodeling. Particle Fibre Toxicol. 2009, 6, 1.
  • 3. Arrott A.: Criterion for ferromagnetism from observations of magnetic isotherms. Phys. Rev. 1957, 108, 1394-1396.
  • 4. Au C, Mutkus L, Dobson A, Riffle J, Lalli J, Aschner M.: Effects of nanoparticles on the adhesion and cell viability on astrocytes. Biol. Trace Elem. Res. 2007, 120, 248-256.
  • 5. Bae JE, Huh MI, Ryu BK, Do JY, Jin SU, Moon MJ, Jung JC, Chang Y, Kim E, Chi SG, Lee GH, Chae KS.: The effect of static magnetic fields on aggregation and cytotoxicity of magnetic nanoparticles. Biomaterials 2011, 32, 9401-9414.
  • 6. Bahadur D, Giri J.: Biomaterials and magnetism. Sadhana 2003, 28, 639-656.
  • 7. Balivada S, Rachakatla RS, Wang H, Samarakoon TN, Dani RK, Pyle M, Kroh FO, Walker B, Leaym X, Koper OB, Tamura M, Chikan V, Bossmann SH, Troyer DL.: A/C magnetic hyperthermia of melanoma mediated by iron/iron oxide core/shell magnetic nanoparticles: a mouse study. BMC Cancer 2010, 10, 119.
  • 8. Berry CC, Wells S, Charles S, Aitchison G, Curtis ASG.: Cell response to dextran-derivatised iron oxide nanoparticles post internalisation. Biomaterials 2004, 25, 5405-5413.
  • 9. Briley-Saebo K, Bjørnerud A, Grant D, Ahlstrom H, Berg T, Kindberg GM.: Hepatic cellular distribution and degradation of iron oxide nanoparticles following single intravenous injection in rats: implications for magnetic resonance imaging. Cell Tissue Res. 2004, 316, 315-323.
  • 10. Brisset JC, Desestret V, Marcellino S, Devillard E, Chauveau F, Lagarde F, Nataf S, Nighoghossian N, Berthezene Y, Wiart M.: Quantitative effects of cell internalization of two types of ultrasmall superparamagnetic iron oxide nanoparticles at 4.7T and 7T. Eur. Radiol. 2010, 20, 275- 285.
  • 11. Chen YJ, Tao J, Xiong F, Zhu JB, Gu N, Geng KK.: Characterization and in vitro cellular uptake of PEG coated iron oxide nanoparticles as MRI contrast agent. Pharmazie 2010, 65, 481-486.
  • 12. Cho WS, Cho M, Kim SR, Choi M, Lee JY, Han BS, Park SN, Yu MK, Jon S, Jeong J.: Pulmonary toxicity and kinetic study of Cy5.5-conjugated superparamagnetic iron oxide nanoparticles by optical imaging. Toxicol. Appl. Pharmacol. 2009, 239, 106-115.
  • 13. Choi JY, Lee SH, Na HB, An K, Hyeon T, Seo TS.: In vitro cytotoxicity screening of water-dispersable metal oxide nanoparticles in human cell lines. Bioprocess Biosyst. Eng. 2010, 33, 21-30.
  • 14. Clement JH, Schwalbe M, Buske N, Wagner K, Schnabelrauch M, Gornert P, Kliche KO, Pachmann K, Weitschies W, Hoffken K.: Differential interaction of magnetic nanoparticles with tumor cells and peripheral blood cells. J. Cancer Res. and Clin. Oncol. 2006, 132, 287-292.
  • 15. Cywińska MA, Grudziński IP, Cieszanowski A, Bystrzejewski M, Popławska M.: Nanoplatforms for magnetic resonance imaging of cancer. Polish J. Radiol. 2011, 76, 28-38.
  • 16. De Jong WH, Borm PJA.: Drug delivery and nanoparticles: Applications and hazards. Int. J. Nanomed. 2008, 3, 133-149.
  • 17. Ding J, Tao K, Li J, Song S, Sun K.: Cell-specific cytotoxicity of dextran-stabilized magnetite nanoparticles. Colloids and Surfaces B: Biointerfaces 2010, 79, 184- 190.
  • 18. Fortin JP, Gazeau F, Wilhelm C.: Intracellular heating of living cells through Néel relaxation of magnetic nanoparticles. Eur. Biophys. J. 2008, 37, 223-228.
  • 19. Gazeau F, Levy, M, Wilhelm C.: Optimizing magnetic nanoparticle design for nanothermotherapy. Nanomedicine 2008, 3, 831-844.
  • 20. Gonzales M, Mitsumori LM, Kushleika JV, Rosenfeld ME, Krishnan KM.: Cytotoxicity of iron oxide nanoparticles made from thermal decomposition of organometallics and aqueous phase transfer with Pluronic F127. Contrast Media Mol. Imaging 2010, 5, 286-293.
  • 21. Grudziński IP.: Bezpieczeństwo nanoproduktów leczniczych: Nowe obszary badań toksykologicznych. Roczn. PZH 2011, 62, 239-246.
  • 22. Gubin SP, Koksharov YA, Khomutov GB, Yurkov GY.: Magnetic nanoparticles: preparation, structure and properties. Russian Chem. Rev. 2005, 74, 489-520.
  • 23. Gupta AK, Curtis AS.: Lactoferrin and ceruloplasmin derivatized superparamagnetic iron oxide nanoparticles for targeting cell surface receptors. Biomaterials 2004, 25, 3029-3040.
  • 24. Gupta AK, Gupta M.: Cytotoxicity suppression and cellular uptake enhancement of surface modified magnetic nanoparticles. Biomaterials 2005, 26, 1565-1573.
  • 25. Gupta AK, Naregalkar RR, Vaidya VD, Gupta M.: Recent advances on surface engineering of magnetic iron oxide nanoparticles and their biomedical applications. Nanomedicine 2007, 2, 23-39.
  • 26. Gupta AK, Wells S.: Surface-modified superparamagnetic nanoparticles for drug delivery: preparation, characterization, and toxicity studies. IEEE Transactions Nanobioscience 2004, 3, 66-73.
  • 27. Häfeli UO, Riffle JS, Harris-Shekhawat L, Carmichael- -Baranauskas A, Mark F, Dailey JP, Bardenstein D.: Cell uptake and in vitro toxicity of magnetic nanoparticles suitable for drug delivery. Mol. Pharm. 2009, 6, 1417- 1428.
  • 28. Haglund E, Seale-Goldsmith MM, Leary JF.: Design of multifunctional nanomedicine systems. Annals of Biomedical Engineering 2009, 37, 2048-2063.
  • 29. Huang YW, Wu C, Aronstam RS.: Toxicity of transition metal oxide nanoparticles: recent insights from in vitro studies. Materials 2010, 3, 4842-4859.
  • 30. Hussain SM, Hess KL, Gearhart JM, Geiss KT, Schlager JJ.: In vitro toxicity of nanoparticles in BRL 3A rat liver cells. Toxicology In Vitro 2005, 19, 975-983.
  • 31. Indira TK, Lakshmi PK.: Magnetic Nanoparticles - Review. International Journal of Pharmaceutical Sciences and Nanotechnology 2010, 3, 1035-1042.
  • 32. Jeng HA, Swanson J.: Toxicity of metal oxide nanoparticles in mammalian cells. J Environ. Sci. Health. A Tox. Hazard Subst. Environ. Eng. 2006, 41, 2699-2711.
  • 33. Kai W, Xiaojun X, Ximing P, Zhenqing H, Qiqing Z.: Cytotoxic effects and the mechanism of three types of magnetic nanoparticles on human hepatoma BEL-7402 cells. Nanoscale Res. Letters 2011, 6, 480.
  • 34. Kim JS, Yoon TJ, Yu KN, Kim BG, Park SJ, Kim HW, Lee KH, Park SB, Lee JK, Cho MH.: Toxicity and tissue distribution of magnetic nanoparticles in mice. Toxicol. Sci. 2006, 89, 338-347.
  • 35. Krishnan KM.: Biomedical Nanomagnetics.: A spin through possibilities in imaging, diagnostics, and therapy. IEEE Trans. Magn. 2010, 46, 2523-2558.
  • 36. Kumar A, Jena PK, Behera S, Lockey RF, Mohapatra S, Mohapatra S.: Multifunctional magnetic nanoparticles for targeted delivery. Nanomedicine 2010, 6, 64-69.
  • 37. Kwon JT, Hwang SK, Jin H, Kim DS, Minai-Tehrani A, Yoon HJ, Choi M, Yoon TJ, Han DY, Kang YW, Yoon BI, Lee JK, Cho MH.: Body distribution of inhaled fluorescent magnetic nanoparticles in the mice. J. Occup. Health 2008, 50, 1-6. 38. Kwon JT, Kim DS, Minai-Tehrani A, Hwang SK, Chang
  • SH, Lee ES, Xu CX, Lim HT, Kim JE, Yoon BI, An GH, Lee KH, Lee JK, Cho MH.: Inhaled fluorescent magnetic nanoparticles induced extramedullary hematopoiesis in the spleen of mice. J. Occup. Health 2009, 51, 423-431.
  • 39. Laurent S, Dutz S, Häfeli UO, Mahmoudi M.: Magnetic fluid hyperthermia: Focus on superparamagnetic iron oxide nanoparticles. Advances Coll. Interface Sci. 2011, 166, 8-23.
  • 40. Levy M, Luciani N, Alloyeau D, Elgrabli D, Daveaux V, Pechoux C, Chat S, Wang G, Vats N, Gendron F, Factor C, Lotersztajn S, Luciani A, Wilhelm C, Gazeau F.: Long term in vivo biotransformation of iron oxide nanoparticles. Biomaterials 2011, 32, 3988-3999.
  • 41. Lin MM, Kim HW, Kim H, Muhammed M, Kim DK.: Iron oxide-based nanomagnets in nanomedicine: fabrication and application. Nanoreviews 2010, 1, 4883.
  • 42. Mahmoudi M, Simchi A, Imani M, Shokrgozar MA, Milani AS, Häfeli UO, Stroeve P.: A new approach for the in vitro identification of the cytotoxicity of superparamagnetic iron oxide nanoparticles. Colloids Surfaces B: Biointerfaces 2010, 75, 300-309.
  • 43. Marmorato P, Ceccone G, Gianoncelli A, Pascolo L, Ponti J, Rossi F, Salomé M, Kaulich B, Kiskinova M.: Cellular distribution and degradation of cobalt ferrite nanoparticles in Balb/3T3 mouse fibroblasts. Toxicol. Letters 2011, 207, 128-136.
  • 44. Maurer-Jones MA, Bantz KC, Love SA, Marquis BJ, Haynes CL.: Toxicity of therapeutic nanoparticles. Nanomedicine 2009, 4, 219-241.
  • 45. Mayer-Hauff K, Ulrich F, Nestler D, Niehoff H, Wust P, Thiesen B, Orawa H, Budach V, Jordan A.: Efficacy and safety of intratumoral thermotherapy using magnetic iron-oxide nanoparticles combined with external beam radiotherapy on patients with recurrent glioblastoma multiforme. J. Neurooncol. 2011, 103, 317-324.
  • 46. Mornet S, Vasseur S, Grasset F, Veverka P, Goglio G, Demourgues A, Portier J, Pollert E, Duguet E.: Magnetic nanoparticle design for medical applications. Progress in Solid State Chemistry 2006, 34, 237-247.
  • 47. Naubauer AM, Sim H, Winter PM, Caruthers SD, Williams TA, Robertson JD, Sept D, Lanza GM, Wickline SA.: Nanoparticle pharmacokinetic profiling in vivo using magnetic resonance imaging. Magn. Reson. Med. 2008, 60, 1353-1361.
  • 48. Oostingh GJ, Casals E, Italiani P, Colognato R, Stritzinger R, Ponti J, Pfaller T, Kohl Y, Ooms D, Favilli F, Leppens H, Lucchesi D, Rossi F, Nelissen I, Thielecke H, Puntes VF, Duschl A, Borashi D.: Problems and challenges in the development and validation of human cell-based assays to determine nanoparticle-induced immunomodulatory effects. Particle Fibre Toxicology 2011, 8, 8.
  • 49. Pankhurst QA, Thanh NKT, Jones SK, Dobson J.: Progress in applications of magnetic nanoparticles in biomedicine. J. Phys. D: Appl. Phys. 2009, 42, 1-15.
  • 50. Park EJ, Kim H, Kim Y, Yi J, Choi K, Park K.: Inflammatory responses may be induced by a single intratracheal instillation of iron nanoparticles in mice. Toxicology 2010, 275, 65-71.
  • 51. Prijic S, Sersa G.: Magnetic nanoparticles as targeted delivery systems in oncology. Radiol. Oncol. 2011, 45, 1-16.
  • 52. Puzyn T, Rasulev B, Gajewicz A, Hu X, Dasari TP, Michalkova A, Hwang HM, Toropov A, Leszczynska D, Leszczynski J.: Using nano-QSAR to predict the cytotoxicity of metal oxide nanoparticles. Nature Nanotechnology 2011, 6, 175-178.
  • 53. Rodríguez-Luccioni H, Latorre-Esteves M, Méndez-Vega J, Soto O, Rodríguez AR, Rinaldi C, Torres-Lugo M.: Enhanced reduction in cell viability by hyperthermia induced by magnetic nanoparticles. Int. J. Nanomed. 2011, 6, 373-380.
  • 54. Runge VM, Clanton JA, Lukehart CM, Partain CL, James AE.: Paramagnetic agents for NMR imaging. Am. J. Roentgenol. 1983, 141, 1209-1215.
  • 55. Safi M, Clowez S, Galimard A, Berret JF.: In vitro toxicity and uptake of magnetic nanorods. J. Physics: Conference Series 2011, 304, 1-8.
  • 56. Safi M, Courtois J, Seigneuret M, Conjeaud H, Berret JF.: The effect of aggregation and protein corona on the cellular internalization of iron oxide nanoparticles. Biomaterials 2011, 32, 9353-9363.
  • 57. Schlachter EK, Widmer HR, Bregy A, Lönnfors-Weitzel T, Vajtai I, Corazza N, Bernau VJP, Weitzel T, Mordasini P, Slotboom J, Herrmann G, Bogni S, Hofmann H, Frenz M, Reinert M.: Metabolic pathway and distribution of superparamagnetic iron oxide nanoparticles: in vivo study. Int. J. Nanomedicine 2011, 6, 1793-1800.
  • 58. Shubajev VI, Pisanic TR, Jin S.: Magnetic nanoparticles for theragnostics. Adv. Drug Delivery Reviews 2009, 61, 467-477.
  • 59. Singh N, Jenkins GJS, Asadi R, Doak SH.: Potential toxicity of superparamagnetic iron oxide nanoparticles (SPION). Nano Reviews 2010, 1, 5358.
  • 60. Soenen SJH, De Cuyper M.: Assessing iron oxide nanoparticle in vitro: current status and future perspectives. Nanomedicine 2010, 5, 1261-1275.
  • 61. Soenen SJ, Illyes E, Vercauteren D, Braeckmans K, Majer Z, De Smedt SC, De Cuyper M.: The role of nanoparticle concentration dependent induction of cellular stress in the internalization of non-toxic cationic magnetoliposomes. Biomaterials 2009, 30, 6803-6813.
  • 62. Soenen SJ, Rivera-Gil P, Montenegro JM, Parak WJ, De Smedt SC, Braeckmans K.: Cellular toxicity of inorganic nanoparticles: Common aspects and guidelines for improved nanotoxicity evaluation. Nano Today 2011, 6, 446-465.
  • 63. Sohaebuddin SK, Thevenot PT, Baker D, Eaton JW, Tang L.: Nanomaterial cytotoxicity is composition, size and cell dependent. Particle Fibre Toxicol. 2010, 7, 22.
  • 64. Sosnovik DE, Nahrendorf M, Weissleder R.: Magnetic nanoparticles for MRI imaging: agents techniques and cardiovascular aplications. Basic Res. Cardiol. 2008, 103, 122-130.
  • 65. Sun C, Du K, Fang C, Bhattarai N, Veiseh O, Kivit F, Stephen Z, Lee D, Ellenbogen RG, Ratner B, Zhang M.: PEG-Mediated synthesis of highly dispersive multifunctional superparamagnetic nanoparticles: their physicochemical properties and function in vivo. ACS Nano 2010, 4, 2402-2410.
  • 66. Sun C, Lee JSH, Zhang M.: Magnetic nanoparticles in MR imaging and drug delivery. Adv. Drug Delivery Reviews 2008, 60, 1252-1265.
  • 67. Tomitaka A, Jeun M, Bae S, Takemura Y.: Evaluation of magnetic and thermal properties of ferrite nanoparticles for biomedical application. J. Magnetics 2011, 16, 164- 168.
  • 68. Wang J, Chen Y, Chen B, Ding J, Xia G, Gao C, Cheng J, Jin N, Zhou Y, Li X, Tang M, Wang XM.: Pharmacokinetic parameters and tissue distribution of magnetic Fe3O4 nanoparticles in mice. Int. J. Nanomedicine 2010, 5, 861-866.
  • 69. Wu YN, Chen DH, Shi XY, Lian CC, Wang TY, Yeh CS, Ratinac KR, Thordarson P, Braet F, Shieh DB.: Cancer- -cell-specific cytotoxicity of non-oxidized iron elements in iron core-gold shell NPs. Nanomedicine: Nanotechnol. Biol. Med. 2011, 7, 420-427.
  • 70. Yan H, Zhang B.: In vitro cytotoxicity of monodispersed hematite nanoparticles on Hek 293 cells. Materials Letters 2011, 65, 815-817.
  • 71. Ying E, Hwang HM.: In vitro evaluation of the cytotoxicity of iron oxide nanoparticles with different coatings and different sizes in A3 human T lymphocytes. Sci. Total Environ. 2010, 408, 4475-4481.
  • 72. Yu Y, Sun D.: Superparamagnetic iron oxide nanoparticle ‘theranostic’ for multimodality tumor imaging, gene delivery, targeted drug and prodrug delivery. Expert Rev. Clin. Pharmacol. 2010, 3, 117-130.
  • 73. Zhao L, Tang J, Feng SS.: Nanothermotherapy by high performance magnetic nanoparticles. Nanomedicine 2010, 5, 1305-1308.

Typ dokumentu

Bibliografia

Identyfikatory

Identyfikator YADDA

bwmeta1.element.agro-4a252b37-9c35-4574-90e2-dba725e9f9d8
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.