Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
2014 | 64 | 1 |
Tytuł artykułu

Anticholinesterase activities of selected polyphenols - a short report

Treść / Zawartość
Warianty tytułu
Języki publikacji
In this work, anticholinesterase activities of 24 polyphenolic compounds were tested using the modified Ellman’s spectrophotometric method. The most efficient acetyl- and butyrylcholinesterase inhibitors were anthocyanins (pelargonidin, delphinidin and cyanidin), flavones (apigenin and luteolin), flavonols (quercetin, kaempferol and myricetin), as well as dihydrochalcone phloridzin and prenylated chalcone xanthohumol. It was established that all the tested compounds were within a narrow molecular weight range of 254.24–354.40 g/mol, which probably was not discriminative for their inhibitory activity. Among all the classes of polyphenolic compounds, the lowest activities were exerted by flavan-3-ols. The inhibitory activity of the tested polyphenols was decreased by the presence of a 3-hydroxyl group. A simultaneous substitution of a carbonyl group at position 4 and a hydroxyl group at position 3 or a lack of both of these substitutions had no effect on the activity of the investigated compounds. The number and position of other hydroxyl groups in the tested molecules played a minor role in this context. Aglycons were more effective cholinesterase inhibitors than their corresponding glycosylated forms. Overall, the results show that phenolic acids can play a role in neuroprotection. However, further in vitro and in vivo studies involving a larger number of polyphenolic compounds simultaneously with well-known cholinesterase inhibitors should be performed in the nearest future to confirm these findings.
Słowa kluczowe
Opis fizyczny
  • Department of Biotechnology, Human Nutrition and Food Commodity Sciences, University of Natural Sciences in Lublin, Skromna 8, 20-704 Lublin, Poland
  • 1. Alvarez A., Bronfman F., Perez C.A., Vicente M., Garrido J., Inestrosa N.C., Acetylcholinesterase, a senile plaque component, affects the fibrillogenesis of amyloid-β-peptides. Neurosci Lett., 1995, 201, 49–52.
  • 2. Alvarez A., Opazo C., Alarcon R., Garrido J., Inestrosa N.C., Acetylcholinesterase promotes the aggregation of amyloid-β- -peptide fragments by forming a complex with the growing fibrils. J. Mol. Biol., 1997, 272, 348–361.
  • 3. Araujo J.A, Greig N.H., Ingram D.K., Sandin J., de Rivera C., Milgram N.W., Cholinesterase inhibitors improve both memory and complex learning in aged beagle dogs. J. Alzheimers Dis., 2011, 26, 143–155.
  • 4. Campos E.O., Alvarez A., Inestrosa N.C., Brain acetylcholinesterase promotes amyloid- β-peptide aggregation but does not hydrolyze amyloid precursor protein peptides. Neurochem. Res., 1998, 23, 135–140.
  • 5. Cebrian J.L., Moran M.A., Gomez-Ramos P., Association of cholinesterases with amyloid in extracellular neurofibrillary tangles. Brain Res., 1997, 173–177.
  • 6. Choi Y.-T., Jung C.-H., Lee S.-R., Bae J.-H., Baek W.-K., Suh M.-H., Park J., Park C.-W., Suh S.-I., The green tea polyphenol (-)-epigallocatechin gallate attenuates β-amyloid-induced neurotixicity in cultured hippocampal neurons. Life Sci., 2001, 70, 603–614.
  • 7. Duchnowicz P., Broncel M., Podsędek A., Koter-Michalak M., Hypolipidemic and antioxidant effects of hydroxycinnamic acids, quercetin, and cyanidin 3-glucoside in hypercholesterolemic erythrocytes (in vitro study). Eur. J. Nutr., 2012, 51, 435–443.
  • 8. Ellman G.L., Lourtney D. K., Andres V., Gmelin G., A new and rapid colorimetric determination of acetylcholinesterase activity. Biochem. Pharmacol., 1961, 7, 88–95.
  • 9. Ferk F., Huber W.W., Filipič M., Bichler J., Haslinger E., Mišik M., Nersesyan A., Grasl-Kraupp B., Žegura B., Knasmüller S., Xanthohumol, a prenylated flavonoid contained in beer prevents the induction of preneoplastic lesions and DNA damage in liver and colon induced by the heterocyclic aromatic amine amino- 3-methylimidazo[4,5-f]quinoline (IQ). Mutat. Res., 2010, 691,17–22.
  • 10. Gerhäuser C., Beer constituents as potential cancer chemopreventive agents. Eur. J. Cancer, 2005, 41, 1941–1954.
  • 11. Gerhäuser C., Alt A., Heiss E., Gamal-Eldeen G., A., Klimo K., Knauft J., Neumann I., Scherf H.-R., Frank N., Bartsch H., Becker H., Cancer chemopreventive activity of xanthohumol, a natural product derived from hop. Mol. Cancer Ther., 2002a, 1, 959–969.
  • 12. Gerhäuser C., Alt A.P., Klimo K., Knauft J., Frank N., Becker H., Isolation and potential cancer chemopreventive activities of phenolic compounds of beer. Phytochem. Rev. 2002b, 1, 369–377.
  • 13. Hamaguchi T., Ono K., Murase A., Yamada M., Phenolic compounds prevent Alzheimer’s pathology through different effects on the amyloid-β aggregation pathway. Am. J Pathol., 2009, 175, 2557–2565.
  • 14. Huebbe P., Wagner A.E., Boesch-Saadatmandi C., Sellmer F., Wolffram S., Rimbach G., Effect of dietary quercetin on brain quercetin levels and the expression of antioxidant and Alzheimer’s disease relevant genes in mice. Pharmacol. Res., 2010, 61, SI, 242–246.
  • 15. Ishge K., Schubert D., Sagara Y., Flavonoids protect neuronal cells from oxidative stress by three distinct mechanisms. Free Rad. Bio. Med., 2001, 30, 433–446.
  • 16. Isoda H., Talorete T.P.N., Kimura M., Maekawa T., Inamori Y., Nakajima N., Seki H., Phytoestrogens genistein and daidzin enhance the acetylcholinesterase activity of the rat pheochromocytoma cell line PC12 by binding to the estrogen receptor. Cytotechnology, 2002, 40, 117–123.
  • 17. Iwashina T., The structure and distribution of the flavonoids in plants. J. Plant Res., 2000, 113, 287–299.
  • 18. Miranda C.L., Aponso G.L.M., Stevens J.F., Deinzer M.L., Buhler D.R., Prenylated chalcones and flavanones as inducers of quinone reductase in mouse Hepa 1c1c7 cells. Cancer Lett., 2000a, 149, 21–29.
  • 19. Miranda C.L., Stevens J.F., Helmrich A., Henderson M.C., Rodriguez R.J., Yang Y.H., Deinzer M.L., Barnes D.W., Buhler D.R., Antiproliferative and cytotoxic effects of prenylated flavonoids from hops (Humulus lupulus) in human cancer cell lines. Food Chem. Toxicol., 1999, 37, 271–285.
  • 20. Miranda C.L., Stevens J.F., Ivanov V., McCall M., Frei B., Deinzer M.L., Buhler D.R., Antioxidant and prooxidant actions of prenylated and nonprenylated chalcones and flavonoids in vitro. J. Agric. Food Chem., 2000b, 48, 3876–3884.
  • 21. Miranda C.L., Yang Y. H., Henderson M. C., Stevens J. F., Santana-Rios G., Deinzer M. L., Buhler D.R., Prenylflavonoids from hops inhibit the metabolic activation of the carcinogenic heterocyclic amine 2-amino-3-methylimidazo[4,5-f]quinoline, mediated by CDNA-expressed human CYP1A2. Drug Metab. Dispos., 2000c, 28, 1297–1302.
  • 22. Nemeth K., Plumb G.W., Berrin J.-G., Juge N., Jacob R., Naim H.Y., Williamson G., Swallow D.M., Kroon P.A., Deglycosylation by small intestinal epithelial cell β-glucosidases is a critical step in the absorption and metabolism of dietary flavonoid glycosides in humans. Eur. J. Nutr., 2003, 42, 29–42.
  • 23. Nozawa H., Xanthohumol, the chalcone from beer hops (Humulus lupulus L.) is the ligand for farnesoid X receptor and ameliorates lipid and glucose metabolism in KK-Ay mice. Biochem. Bioph. Res. Co., 2005, 336, 754–761.
  • 24. Ono K., Hamaguchi T., Naiki H., Yamada M., Anti-amyloidogenic effects of antioxidants: Implications for the prevention and therapeutics of Alzheimer’s disease. Biochim. Biophys. Acta, 2006, 1762, 575–586.
  • 25. Ono K., Hasegawa K., Naiki H., Hamada M., Curcumin has potent anti-amyloidogenic effects for Alzheimer’s beta-amyloid fibrils in vitro. J. Neurosci. Res., 2004, 75, 742–750.
  • 26. Ono K., Yoshiike Y., Takashima A., Hasegawa K., Naiki H., Yamada M., Potent anti-amyloidogenic and fibril-destabilizing effects of polyphenols in vitro: implications for the prevention and therapeutics of Alzheimer’s disease. J. Neurochem., 2003, 87, 172–181.
  • 27. Peeyush Kumar T., Antony S., Soman S., Kuruvilla K.P., George N., Paulose C.S., Role of curcumin in the prevention of cholinergic mediated cortical dysfunctions in streptozotocin-induced diabetic rats. Mol. Cell Endocrinol., 2011, 331, 1–10.
  • 28. Porat Y., Abramowitz A., Gazit E., Inhibition of amyloid fibril formation by polyphenols: structural similarity and aromatic interactions as a common inhibition mechanism. Chem. Biol. Drug Des., 2006, 67, 27–37.
  • 29. Rhee I.K., van Rijn, R.M., Verpoorte, R., Qualitative determination of false-positive effects in the acetylcholinesterase assay using thin layer chromatography. Phytochem. Anal., 2003, 14, 127–131.
  • 30. Riviere C., Richard T., Quentin L., Krisa S., Merillon J.-M., Monti J.-P., Inhibitory activity of stilbenes on Alzheimer’s β-amyloid fibrils in vitro. Bioorg. Med. Chem., 2007, 15, 1160–1167.
  • 31. Rodriguez R.J., Miranda C.L., Stevens J.F., Deinzer M.L., Buhler D.R., Influence of prenylated and non-prenylated flavonoids on liver microsomal lipid peroxidation and oxidative injury in rat hepatocytes. Food Chem. Toxicol., 2001, 39, 437–445.
  • 32. Scapagnini G., Butterfield D.A., Colombrita C., Sultana R., Pascale A., Calabrese V., Ethyl ferulate, a lipophilic polyphenol, induces HO-1 and protects rat neurons against oxidative stress. Antioxid. Redox Signal., 2004, 6, 811–818.
  • 33. Schmatz R., Mazzanti C.M., Spanevello R., Stefanello N., Gutierres J., Correa M., da Rosa M.M., Rubin M.A., Chitolina Schetinger M.R., Morsch V.M., Resveratrol prevents memory deficits and the increase in acetylcholinesterase activity in streptozotocin- induced diabetic rats. Eur. J. Pharmacol., 2009a, 610, 42–48.
  • 34. Schmatz R., Mazzanti C.M., Spanevello R., Stefanello N., Gutierres J., Maldonado P.A., Correa M., da Rosa M.M., Becker L., Bagatini M., Gonçalves J.F., Jaques Jdos S., Schetinger M.R., Morsch V.M., Ectonucleotidase and acetylcholinesterase activities in synaptosomes from the cerebral cortex of streptozotocininduced diabetic rats and treated with resveratrol. Brain Res Bull., 2009b, 80, 371–376.
  • 35. Schroeter H., Williams R.J., Matin R., Iversen L., Rice-Evans C.A., Phenolic antioxidants attenuate neuronal cell death following uptake of oxidized low-density lipoprotein. Free Rad. Bio. Med., 2000, 29, 1222–1233.
  • 36. Scott B.C., Butler J., Halliwell B., Aruoma O.I., Evaluation of the antioxidant actions of ferulic acid and catechins. Free Radic. Res. Com., 1993, 19, 241–253.
  • 37. Sultana R. Ravagna A., Mohmmad-Abdul H., Calabrese V., Butterfield D.A., Ferulic acid ethyl ester protects neurons against amyloid beta-peptide(1–42)-induced oxidative stress and neurotoxicity: relationship to antioxidant activity. J. Neurochem., 2005, 92, 749–758.
  • 38. Simmering R., Pforte H, Jacobasch G., Blaut B., The growth of the flavonoid-degrading intestinal bacterium, Eubacterium ramulus, is stimulated by dietary flavonoids in vivo. FEMS Microbiol. Ecol., 2002, 40, 243–248.
  • 39. Szwajgier D., Borowiec K., Phenolic acids from malt are efficient acetylcholinesterase and butyrylcholinesterase inhibitors. J. Inst. Brew., 2012, 118, 40–48.
  • 40. Tong-Un T., Muchimapura S., Phachonpai W., Wattanathorn J., Nasal administration of quercetin liposomes modulate cognitive impairment and inhibit acetylcholinesterase activity in hippocampus. Am. J. Neurosci., 2010, 1, 21–27.
  • 41. Young J., Wahle K.W.J., Boyle S.P., Cytoprotective effects of phenolic antioxidants and essential fatty acids in human blood monocyte and neuroblastoma cell lines: Surrogates for neurological damage in vivo. Prostag. Leukotr. Ess., 2008, 78, 45–59.
Rekord w opracowaniu
Typ dokumentu
Identyfikator YADDA
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.