Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
2019 | 28 | 4 |
Tytuł artykułu

Variations of cadmium accumulation and translocation in different pakchoi cultivars and screening for Cd-pollution-safe cultivars using cluster analysis

Warianty tytułu
Języki publikacji
Screening and breeding of pollution-safe cultivars (PSCs) has become one of the most direct and cost-effective methods for reducing the health risks of heavy metal-contaminated soil. In this paper we identified and screened out cadmium (Cd)-pollution-safe pakchoi cultivars from 30 pakchoi genetype materials through preliminary screening experiments and re-screening experiments in field conditions. We found that in preliminary screening experiments, the Cd uptake displayed significant variability among the 30 selected pakchoi cultivaters grown in soil with a Cd concentration of 0.51 mg/kg. 11 out of the 30 pakchoi cultivars belonged to the low-Cd accumulated cluster classified by cluster analysis, which had the potential to be Cd-PSCs. The re-screening experiments under different Cd levels of contaminated soils in combination with the studies of the enrichment factors (EFs) and translocation factors (TFs) further confirmed the consistency and genotypic stability of the low-Cd accumulating traits of the potential Cd-PSCs. This study proves the feasibility of applying cluster analysis in the process of identifying PSCs.
Słowa kluczowe
Opis fizyczny
  • College of Bioscience and Biotechnology, Hunan Agricultural University, Changsha, China
  • College of Science, Hunan Agricultural University, Changsha, China
  • Research Institute of Vegetables, Hunan Academy of Agricultural Sciences, Changsha, China
  • Hunan Academy of Agricultural Sciences, Changsha, China
  • Research Institute of Vegetables, Hunan Academy of Agricultural Sciences, Changsha, China
  • Hunan Academy of Agricultural Sciences, Changsha, China
  • Research Institute of Vegetables, Hunan Academy of Agricultural Sciences, Changsha, China
  • Hunan Academy of Agricultural Sciences, Changsha, China
  • 1. MAJOLAGBE A.O., ADEYI A.A., OSIBANJO O., ADAMS A.O., OJURI O.O. Pollution vulnerability and health risk assessment of groundwater around an engineering Landfill in Lagos, Nigeria. Chemistry International. 3, 58, 2017.
  • 2. FAIT S., FAKHI S., ElMZIBRI M., FAIZ Z., FOUGRACH H., BADRI W., SMOUNI A., FAHR M. Distribution of metallic trace elements (ETM) in surface soils around the mediouna discharge (southern of Casablanca). Chemistry International. 3, 278, 2017.
  • 3. MAJOLAGBE A.O., ADEYI A.A., OSIBANJO O. Vulnerability assessment of groundwater pollution in the vicinity of an active dumpsite (Olusosun), Lagos, Nigeria. Chemistry International. 2, 232. 2016.
  • 4. IQBAL A., TABINDA A., YASAR A, MAHFOOZ Y. Heavy metal uptake and toxicity in tissues of commercially important freshwater fish (labeo rohita and wallago attu) from the Indus river, Pakistan. Polish Journal of Environmental Studies. 26 (2), 627, 2017.
  • 5. LI Z., MA Z., VANDER KUIJP T., YUAN Z., HUANG L. A review of soil heavy metal pollution from mines in China: pollution and health risk assessment. Science of the Total Environment. 468-469, 843, 2014.
  • 6. MALANDRINO M., ABOLLINO O., BUOSO S., GIACOMINO A., GIOIA C., MENTASTI E. Accumulation of heavy metals from contaminated soil to plants and evaluation of soil remediation by vermiculite. Chemosphere. 82 (2), 169, 2011.
  • 7. SUN Y., LI Y., XU Y., LIANG X., WANG L. In situ, stabilization remediation of cadmium (Cd) and lead (Pb) co-contaminated paddy soil using bentonite. Applied Clay Science. s105-106, 200, 2015.
  • 8. LU K., YANG X., GIELEN G., BOLAN N., OK Y., NIAZI S., XU. S., YUAN G., CHEN X., ZHANG X., LIU D., SONG Z., LIU X., WANG H. Effect of bamboo and rice straw biochars on the mobility and redistribution of heavy metals (Cd, Cu, Pb and Zn) in contaminated soil. Journal of Environmental Management. 186 (Pt 2), 285, 2017.
  • 9. ADILOĢLU S. Using phytoremediation with canola to remove cobalt from agricultural soils. Polish Journal of Environmental Studies. 25 (6), 2251, 2016.
  • 10. WAN X., LEI M., CHEN T. Cost-benefit calculation of phytoremediation technology for heavy-metalcontaminated soil. Science of the Total Environment. s563-564 (563), 796, 2016.
  • 11. BECH J., ROCA N., TUME P., RAMOS-MIRAS J., GIL C., BOLUDA R. Screening for new accumulator plants in heavy metal polluted soil surrounding Peruvian mine tailings. Catena. 136, 66, 2015.
  • 12. SHARMA S., SINGH B., MANCHANDA V. Phytoremediation: role of terrestrial plants and aquatic macrophytes in the remediation of radionuclides and heavy metal contaminated soil and water. Environmental Science and Pollution Research. 22 (2), 946, 2015.
  • 13. BELLITURK K., SHRESTHA P., GÖRRES J. The importance of phytoremediation of heavy metal contaminated soil using vermicompost for sustainable agriculture. Journal of Endocrinology. 3 (3), 283, 2015.
  • 14. GILL S., KHAN N., ANJUM N., TUTEJA N. Amelioration of cadmium stress in crop plants by nutrients management: morphological, physiological and biochemical aspects. Plant Stress. 5 (s1), 1, 2011.
  • 15. SARKAR A., RAVINDRAN G., KRISHNAMURTHY V. A brief review on the effect of cadmium toxicity: from cellular to organ level. International Journal of Bio-Technology and Research. 3 (1), 17, 2013.
  • 16. YANG Q., XU Y., LIU S., HE J., LONG F. Concentration and potential health risk of heavy metals in market vegetables in Chongqing, China. Ecotoxicology & Environmental Safety. 74 (74), 1664, 2011.
  • 17. GILL S., KHAN N., TUTEJA N. Differential cadmium stress tolerance in five indian mustard (Brassica juncea L.) cultivars: an evaluation of the role of antioxidant machinery. Plant Signaling & Behavior. 6 (2), 293, 2011.
  • 18. LIU Y., ZHANG C., ZHAO Y., SUN S., LIU Z. Effects of growing seasons and genotypes on the accumulation of cadmium and mineral nutrients in rice grown in cadmium contaminated soil. Science of The Total Environment. 579 (1), 1282, 2016.
  • 19. LIU W., LIANG L., ZHANG X., ZHOU Q. Cultivar variations in cadmium and lead accumulation and distribution among 30 wheat (Triticum aestivum L.) cultivars. Environmental Science & Pollution Research International. 22 (11), 8432, 2015.
  • 20. YU H., WANG J., FANG W., YUAN J., YANG Z. Cadmium accumulation in different rice cultivars and screening for pollution-safe cultivars of rice. Science of the Total Environment. 370 (2), 302, 2006.
  • 21. ZHANG H., ZHANG X., LI T., HUANG F. Variation of cadmium uptake, translocation among rice lines and detecting for potential cadmium-safe cultivars. Environmental Earth Sciences. 71 (1), 277, 2014.
  • 22. LI B., HE W., WANG C., GUO Y., ZHANG J. Selecting for cadmium exclusion or low accumulation rice cultivars in slight-moderate pollution area under field conditions. Polish Journal of Environmental Studies. 23 (4), 1347, 2014.
  • 23. WANG J., YU N., SHINWARI K., SHEN Z., ZHENG L. Screening for Cd-safe cultivars of Chinese cabbage and a preliminary study on the mechanisms of Cd accumulation. International Journal of Environmental Research & Public Health. 14 (4), 395, 2017.
  • 24. CLARKE J., MCCAIG T., DEPAUW R., KNOX R., CLARKE. F., FERNANDEZ. M., AMES. N. Registration of ‘Strongfield’ durum wheat. Crop Science. 46 (5), 253, 2006.
  • 25. CAO F., WANG R., CHENG W., ZENG F., AHMED I., HU.X., ZHANG G., WU F. Genotypic and environmental variation in cadmium, chromium, lead and copper in rice and approaches for reducing the accumulation. Science of the Total Environment. 496, 275, 2014.
  • 26. SUNGUR A., SOYLAK M., ÖZCAN H. Chemical fractionation, mobility and environmental impacts of heavy metals in greenhouse soils from Çanakkale, Turkey. Environmental Earth Sciences. 75 (4), 334, 2016.
  • 27. RIVERA M.B., GIRÁLDEZ M.I., FERNÁNDEZ CALIANI J.C. Assessing the environmental availability of heavy metals in geogenically contaminated soils of the Sierra de Aracena Natural Park (SW Spain). Is there a health risk?. Science of the Total Environment. 560-561, 254, 2016.
  • 28. DONG W., CUI Y., LIU X. Instances of soil and crop heavy metal contamination in China. Soil & Sediment Contamination. 10 (5), 497, 2001.
  • 29. WANG L., XU Y., SUN Y., LIANG X., LIN D. Identification of pakchoi cultivars with low cadmium accumulation and soil factors that affect their cadmium uptake and translocation. Frontiers of Environmental Science & Engineering. 8 (6), 877, 2014.
  • 30. MMOLAWA K., LIKUKU A., GABOUTLOELOE G. Assessment of heavy metal pollution in soils along major roadside areas in Botswana. African Journal of Environmental Science & Technology. 5 (3), 186, 2011.
  • 31. YADAV S., CHANDRA R. Heavy metals accumulation and ecophysiological effect on Typha angustifolia L. and Cyperus esculentus L. growing in distillery and tannery effluent polluted natural wetland site, Unnao, India. Environmental Earth Sciences. 62 (6), 1235, 2011.
  • 32. CHEN Y., LI T., HAN X., DING Z., YANG X., JIN Y. Cadmium accumulation in different pakchoi cultivars and screening for pollution-safe cultivars. Journal of Zhejiang University Science B. 13 (6), 494, 2012.
  • 33. HU J., WU F., WU S., SUN X., LIN X., WONG M. Phytoavailability and phytovariety codetermine the bioaccumulation risk of heavy metal from soils, focusing on Cd-contaminated vegetable farms around the Pearl River Delta, China. Ecotoxicology & Environmental Safety. 91 (2), 18, 2013.
  • 34. BENABDALLAH N.K., HARRACHE D., MIR A., GUARDIA M.D.L., BENHACHEM F.Z. Bioaccumulation of trace metals by red alga Corallina elongata in the coast of Beni Saf, west coast, Algeria. Chemistry International. 3, 220, 2017.
  • 35. MA M., LAU A., JIA Y., TSANG W., LAM S., TAM N., WONG Y. The isolation and characterization of Type 1 metallothionein (MT) cDNA from a heavy-metal-tolerant plant, Festuca rubra, cv. Merlin. Plant Science. 164 (1), 51, 2003.
Typ dokumentu
Identyfikator YADDA
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.