PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
2015 | 24 | 2 |

Tytuł artykułu

The absorption and enrichment condition of mercury by three plant species

Warianty tytułu

Języki publikacji

EN

Abstrakty

EN
In this paper we studied the absorption condition of three common plant species, Aloevera var.chinensis, Chlorophytum comosum, and Autumn violet. We compared the enrichment ability of three plant species to lay the foundation for exploring the use of plants to repair mercury-contaminated soils. The amount of mercury uptake by three plant species was determined by cold vapor atomic absorption spectrometry. The results demonstrated that all plant species were able to take up Hg to an extent from a nutrient solution containing 800µg/L Hg and mercury-contaminated soils (total mercury content: 0.15-0.20 µg/g soils). However, the Hg translocation to the stems or leaves wasn’t high. The enrichment ability of Chlorophytum comosum was strongest among three plant species.

Słowa kluczowe

Wydawca

-

Rocznik

Tom

24

Numer

2

Opis fizyczny

p.887-891,fig.,ref.

Twórcy

autor
  • State Key Laboratory of Coal Mine Disaster Dynamics and Control, Chongqing University 174 Shazheng Street, Shapingba district of Chongqing, China
  • College of Resources and Environmental Science, Chongqing University 174 Shazheng Street, Shapingba district of Chongqing, China
autor
  • State Key Laboratory of Coal Mine Disaster Dynamics and Control, Chongqing University 174 Shazheng Street, Shapingba district of Chongqing, China
  • College of Resources and Environmental Science, Chongqing University 174 Shazheng Street, Shapingba district of Chongqing, China
autor
  • Chongqing Ming Xiang Technology Environmental Equipment Co., Ltd.
  • Three Gorges Reservoir Area’s Ecology and Environment Key Laboratory of Ministry of Education, Chongqing University, Chongqing, 400045, China
  • National Centre for International Research of Low-carbon and Green Buildings, Chongqing University, Chongqing, 400045, China

Bibliografia

  • 1. JANKIEWICZ B., ADAMCZYK D., Assesing heavy metal content in soils surrounding the Łódź EC4 power plant, Poland, Pol. J. Environ. Stud., 16, (6), 933, 2007.
  • 2. JANKIEWICZ B., ADAMCZYK D., Assesing heavy metal content in soils surrounding a power plant, Poland, Pol. J. Environ. Stud., 19, (4), 849, 2010.
  • 3. TUMUKLU A., YALCIN M.G., SONMEZ M., Detection of heavy metal concentrations in soils caused by Nigde City Garbage Dump, Pol. J. Environ. Stud., 16, (4), 651, 2007.
  • 4. SZYCZEWSKI P., SIEPAK J., NIEDZIELSKI P., SOBCZYŃSKI T., Research on heavy metals in Poland, Pol. J. Environ. Stud., 18, (5), 755, 2009.
  • 5. CORDY P., VEIGA M.M., SALIH I., AL-SAADI S., CONSOLE S., GARCIA O., MESA L.A., VELASQUEZ-LOPEZ PC., ROESER M., Mercury contamination from artisanal gold mining in Antioquia, Colombia: the world’s highest per capita mercury pollution. Sei. Total Environ. 410, 154-160, 2011.
  • 6. DRACE K., KIEFERA.M., VEIGA M.M., WILLIAMS M.K., ASCARI B., KNAPPER K.A., LOGAN K. M., BRESLIN V.M., SKIDMORE A., BOLT D.A., GEIST G., REIDY L., CIZDZIEL J.V., Mercury-free, small-scale artisanal gold mining in Mozambique: utilization of magnets to isolate gold at clean tech mine. J. Cleaner Prod. 32, 88-95, 2012.
  • 7. KRISNAYANTI B.D., ANDERSON C.W.N., UTOMO W.H., FENG X., HANDAYANTO E., MUDARISNA N., IKRAM H., KHUSUSIA H., Assessment of environmental mercury discharge at a four-year-old artisanal gold mining area on Lombok Island, Indonesia. J. Environ. Monit. 14, 2598-2607, 2012.
  • 8. TELMER K.H., VEIGA M.M., World emissions of mercury from artisanal and small scale gold mining. In: Mason, R., Pirrone, N. (Eds.), Mercury Fate and Transport in the Global Atmosphere: Emissions, Measurements and Models. Springer, US, Dordrecht; New York, pp. 131-172, 2009.
  • 9. VEIGA M., MEECH J., Reduction of mercury emissions from gold mining activities and remedial procedures for polluted sites. In: Azcue, J.M. (Ed.), Environmental Impacts of Mining Activities. Springer-Verlag, pp. 143-162,1999.
  • 10. WANG Q.C., Mercury pollution: An invisible poison chain [ EB /OL]. [ 2004-6-18 ]. http: //www.amitemp.cn/amitemp / amitemp_page_005. htm, 2004.
  • 11. HORVAT M., NOLDE N., FAJON V., JEREB V., LOGAR M., LOJEN S., JACIMOVIC R., FALNOGA I., LIYA Q., FAGANELI J., DROBNE D., Total mercury, methyl mercury and selenium in mercury polluted areas in the province Guizhou, China. Science of the Total Environment, 304, 231-256, 2003.
  • 12. QIU G.L., FENG X.B., WANG S.F., SHANG L.H., Mercury and methyl mercury in riparian soil, sediments, mine-waste calcines, and moss from abandoned Hg mines in east Guizhou province, southwestern China. Applied Geochemistry. 20, 627-638, 2005.
  • 13. NRC (National Research Council). Clean Coastal Waters: Understanding and Reducing the Effects of Nutrient Pollution. National Academy Press, Washington, D.C., USA, 2000.
  • 14. ENGSTROM D.R., SWAIN E.B., Recent declines in atmospheric mercury deposition in the upper Midwest. Environmental Science & Technology. 31, 960-967,1997.
  • 15. MUNTHE J., BODALY R., BRANFIREUN B.A., DRISCOLL C.T., GILMOUR C.C., HARRIS R., HORVAT M., LUCOTTE M., MALM O., Recovery of mercury- contaminated fisheries. AMBIO: A Journal of the Human Environment. 36, 33-44, 2007.
  • 16. FREY B., STEPHAN R., RIEDE R., Response of forest soil bacterial communities to mercury chloride application. Soil Biology & Biochemistry. 65, 329-337, 2013.
  • 17. BOENING D.W., Ecological effects, transport, and fate of mercury: A general review. Chemosphere. 40, 1335-1351, 2002.
  • 18. SCHROEDER W.H., MUNTHE J., Atmospheric mercury - An overview. Atmos. Environ. 32, 809-822,1998.
  • 19. KRAEMER U., CHARDONNENS A.N. The use of transgenic plants in the bioremediation of soils contaminated with trace elements. Applied Microbiology and Biotechnology. 55 (6), 661-672, 2001.
  • 20. SYKES M., YANG V., BLANKENBURG J., ABUBAKR S., Biotechnology:Working with nature to improve forest resources and products. International Environmental Conference, 631-637,1999.
  • 21. KAVAMURA V.N., ESPOSITO E., Biotechnological strategies applied to the decontamination of soils polluted with heavy metals. Biotechnol. Adv. 28, 61-69, 2010.
  • 22. ANDERSON C.W.N., BROOKS R.R., STEWART R.B., SIMCOCK R., Harvesting a crop of gold in plants. Nature. 395, 553-554,1998.
  • 23. HUANG J., CHEN J., BERTI W.R., CUNNINGHUM S.D., Phytoremediation of lead contaminated soils: Role of synthetic chelates in lead phytoextraction. Environmental Science & Technology. 31 (3), 800-805,1997.
  • 24. MA L.Q., KOMAR K.M., TU C., ZHANG W.H., CAI Y., KENNELLEY E.D., A fern that hyperaccumulates arsenic. Nature. 409, 579-579, 2001.
  • 25. PETKEWICH R., Bugs boost phytoremediation. Environmental Science & Technology. 38 (13), 240A, 2004.
  • 26. ANDREAZZAR., BORTOLON L., PIENIZ S., CAMARGO F.A.O., Use of High-Yielding Bioenergy Plant Castor Bean (Ricinus communis L.) as a Potential Phytoremediator for Copper-Contaminated Soils. Pedosphere. 23 (5), 651-661, 2013.
  • 27. COCKING D., ROHRER M., THOMAS R., WALKER J., WARD D., Effects of root morphology and Hg concentration in the soil on uptake by terrestrial vascular plants. Water Air and Soil Pollution. 80, 1113-1116,1995.
  • 28. GREGER M., WANG Y.D., NEUSCHÜTZ C., Absence of Hg transpiration by shoot after Hg uptake by roots of six terrestrial plant species. Environmental Pollution. 134, 201-208, 2005.

Typ dokumentu

Bibliografia

Identyfikatory

Identyfikator YADDA

bwmeta1.element.agro-4a1b33bd-ac84-48db-bb46-d8ed365aa8d7
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.