Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
2015 | 37 | 12 |
Tytuł artykułu

Overexpression of NnDREB2, isolated from lotus improves salt tolerance in transgenic Arabidopsis thaliana

Warianty tytułu
Języki publikacji
DREBs are believed to participate in plant responses to adverse environmental factors by activating down-stream stress-inducible genes. In this study, we isolated an NnDREB2 from a salt-resistant lotus species using RT-PCR and RACE methods. Expression profiling by realtime PCR technique revealed that NnDREB2 enhanced transcriptional level when treated with NaCl and exogenous ABA, and while its expression was not significantly changed with mannitol or 4 C treatments. NnDREB2 was transformed into Arabidopsis with a binary vector (SN1301) construct to identify its function. After selection of ‘positive’ transgenic plants, transgenic and non-transgenic plants (wild type plants) were treated with 250 mM NaCl. We found that the plants overexpressing NnDREB2 led to higher salt resistance than that of the wild type plants according to their survival rates. In addition, NnDREB2 expression exhibited higher germination rates and better root growth than in control plants on MS medium containing various concentration of NaCl. Down-stream target stress-related genes were also analyzed, and we observed that NnDREB2 overexpression activated stress-responsive genes such as PIP1-2, PIP2-5 and PIP2-7 in transgenic Arabidopsis plants. Totally, our findings suggested that the NnDREB2 participated in an ABA-dependent pathway, and might play an important role in plant for salt stress adaptation by directly binding with the DRE element tnemeto regulate down-stream gene expression in salt-resistant lotus.
Słowa kluczowe
Opis fizyczny
Article: 261 [12 p.], fig.,ref.
  • School of Horticulture and Plant Protection, Yangzhou University, Yangzhou, Jiangsu, People’s Republic of China
  • School of Horticulture and Plant Protection, Yangzhou University, Yangzhou, Jiangsu, People’s Republic of China
  • College of Guangling, Yangzhou University, Yangzhou, Jiangsu, People’s Republic of China
  • School of Horticulture and Plant Protection, Yangzhou University, Yangzhou, Jiangsu, People’s Republic of China
  • School of Horticulture and Plant Protection, Yangzhou University, Yangzhou, Jiangsu, People’s Republic of China
  • Agarwal P, Agarwal PK. Nair S, Sopory SK, Reddy MK (2007) Stress-inducible DREB2A transcription factor from Pennisetum glaucum is a phosphoprotein and its phosphorylation negatively regulates its DNA-binding act. Mol Genet Genom 277:189–198. doi:10.1007/s00438-006-0183-z
  • Ban QY, Liu GF, Wang YC (2011) A DREB gene from Limonium bicolor mediates molecular and physiological responses to copper stress in transgenic tobacco. J Plant Physiol 168:449–458. doi:10.1016/j.jplph.2010.08.013
  • Borgi W, Ghedira K, Chouchane N (2007) Antiinflammatory and analgesic activities of zizyphus lotus root barks. Fitoterapia 78:16–19. doi:10.1016/j.fitote.2006.09.010
  • Bouaziz D, Pirrello J, Amor HB, Hammamia A, Charfeddine M, Dhieb A, Bouzayen M, Gargouri-Bouzid R (2012) Ectopic expression of dehydration responsive element binding proteins (StDREB2) confers higher tolerance to salt stress in potato. Plant Physiol Biochem 60:98–108. doi:10.1016/j.plaphy.2012.07.029
  • Chen M, Wang QY, Cheng XG, Xu ZS, Li LC, Ye XG, Xia LQ, Ma YZ (2007) GmDREB2, a soybean DRE-binding transcription factor, conferred drought and high-salt tolerance in transgenic plants. Biochem Biophys Res Commun 353:299–305. doi:10.1016/j.bbrc.2006.12.027
  • Chen JH, Xia XL, Yin WL (2009) Expression profiling and functional characterization of a DREB2-type gene from Populus euphratica. Biochem Biophys Res Commun 378:483–487. doi:10.1007/s11240-013-0386-z
  • Chen JH, Xia XL, Yin WL (2011) A poplar DRE-binding protein gene, PeDREB2L, is involved in regulation of defense response against abiotic stress. Gene 483:36–42. doi:10.1016/j.gene.2011. 05.010
  • Cheng LB, Li SY, Hussain J, Xu XY, Yin JJ, Zhang Y, Chen XH, Li LJ (2013a) Isolation and functional characterization of a salt responsive transcriptional factor, LrbZIP from lotus root (Nelumbo nucifera Gaertn). Mol Biol Rep 40:4033–4045. doi:10.1007/s11033-012-2481-3
  • Cheng LB, Li SY, Yin JJ, Li LJ, Chen XH (2013b) Genome-wide analysis of differentially expressed genes relevant to rhizome formation in lotus root (Nelumbo nucifera Gaertn). PLOS One 8:e67116. doi:10.1371/journal.pone.0067116
  • Clough SJ, Bent AF (1998) Floral dip: a simplified method for Agrobacterium-mediated transformation of Arabidopsis thaliana. Plant J 16:735–743. doi:10.1046/j.1365-313x.1998.00343.x
  • Du H, Zhao X, You JS, Park JY, Kim SH, Chang KJ (2010) Antioxidant and hepatic protective effects of lotus root hot water extract with taurine supplementation in rats fed a high fat diet. J Biomed Sci 17. doi:10.1186/1423-0127-17-S1-S39
  • Egawa C, Kobayashi F, Ishibashi M, Nakamura T, Nakamura C, Takumi S (2006) Differential regulation of transcript accumulation and alternative splicing of a DREB2 homolog under abiotic stress conditions in common wheat. Genes Genet Syst 81:77–91. doi:10.1266/ggs.81.77
  • Finkelstein R, Gampala S, Rock C (2002) Abscisic acid signaling in seeds and seedlings. Plant Cell 14:15–45. doi:10.1105/tpc.010441
  • Guerrero FD, Crossland L (1993) Tissue-specific expression of a plant turgor-responsive gene with amino acid sequence homology to transport-facilitating proteins. Plant Mol Biol 21:929–935.
  • Gutterson N, Reuber TL (2004) Regulation of disease resistance pathways by AP2/ERF transcription factors. Curr Opin Plant Biol 7:465–471. doi:10.1016/j.pbi.2004.04.007
  • Hall J, Flowers T (1973) The effect of salt on protein synthesis in the halophyte Suaeda maritima. Planta 110:361–368
  • Hu HH, You J, Fang YJ, Zhu XY, Qi ZY, Xiong LH (2010) Erratum to: characterization of transcription factor gene SNAC2 conferring cold and salt tolerance in rice. Plant Mol Biol 72:567–568. doi:10.1007/s11103-008-9309-5
  • Husain S, Munns R, Condon A (2003) Effect of sodium exclusion trait on chlorophyll retention and growth of durum wheat in saline soil. Aust J Agric Res 54:589–598
  • Jang JY, Kim DG, Kim YO, Kim JS, Kang HS (2004) An expression analysis of a gene family encoding plasma membrane aquaporins in response to abiotic stresses in Arabidopsis thaliana. Plant Mol Biol 54:713–725. doi:10.1023/B:PLAN.0000040900.61345.a6
  • Johanson U, Karlsson M, Johansson I, Gustavsson S, Sjovall S, Fraysse L, Weig AR, Kjellbom P (2001) The complete set of genes encoding major intrinsic proteins in Arabidopsis provides a framework for a new nomenclature for major intrinsic proteins in plants. Plant Physiol 126:1358–1369. doi:10.1104/pp.1264.1358
  • Kader MA, Lindberg S (2010) Cytosolic calcium and pH signaling in plants under salinity stress. Plant Signal Behav 5:233–238. doi:10.4161/psb.5.3.10740
  • Kang HG, Kim J, Kim B, Jeong H, Choi SH, Kim EK, Lee HY, Lim PO (2011) Overexpression of FTL1/DDF1, an AP2 transcription factor, enhances tolerance to cold, drought, and heat stresses in Arabidopsis thaliana. Plant Sci 180:634–641. doi:10.1016/j.plantsci
  • Kim S (2005) The role of ABF family bZIP class transcription factors in stress response. Physiol Plant 126:519–527. doi:10.111/j.1399-3054.2005.00601.x
  • Lahner B, Gong J, Mahmoudian M, Smith EL, Abid KB, Rogers EE, Guerinot ML, Harper JF, Ward JM, McIntyre L (2003) Genomic scale profiling of nutrient and trace elements in Arabidopsis thaliana. Nat Biotech 21:1215–1221. doi:10.1038/nbt865
  • Li C, Junttila O, Heino P, Palva E (2003) Different responses of northern and southern ecotypes of Betula pendula to exogenous ABA application. Tree Physiol 23:481–487. doi:10.1093/treephys/23.7.481
  • Li JT, Wang N, Xin HP, Li SH (2013) Overexpression of VaCBF4, a transcription factor from Vitis amurensis, improves cold tolerance accompanying increased resistance to drought and salinity in Arabidopsis. Plant Mol Biol Rep 31:1518–1528. doi:10.1007/s11105-013-0627-7
  • Liu Q, Kasuga M, Sakuma Y, Abe H, Miura S, Yamaguchi-Shinozaki K, Shinozaki K (1998) Two transcription factors, DREB1 and DREB2, with an EREBP/AP2 DNA binding domain separate two cellular signal transduction pathways in droughtand lowtemperature-responsive gene expression, respectively, in Arabidopsis. Plant Cell 10:1391–1406. doi:10.1105/tpc.10.8.1391
  • Liu J, Zhang M, Wang S (2010) Processing characteristics and flavour of full lotus root powder beverage. J Sci Food Agric 90:2482–2489. doi:10.1002/jsfa.4110
  • Low R, Rockel B, Kirsch M, Ratajczak R, Hortensteiner S, Martinoia E, Lüttge U, Rausch T (1996) Early salt stress effects on the differential expression of vacuolar H + -ATPase genes in roots and leaves of Mesembryanthemum crystallinum. Plant Physiol 110:259–265
  • Ma LF, Zhang JM, Huang GQ, Li Y, Li XB, Zheng Y (2014) Molecular characterization of cotton C-repeat/dehydrationresponsive element binding factor genes that are involved in response to cold stress. Mol Biol Rep 41:4369–4379. doi:10.1007/s11033-014-3308-1
  • Maurel C, Reizer J, Schroeder JI, Chrispeels MJ (1993) The vacuolar membrane protein c-TIP creates water specific channels in Xenopus oocytes. EMBO J 12:2241–2247
  • Ming R, VanBuren R, Liu Y, Yang M, Han Y, Li LT, Zhang Q, Kim MJ, Schatz MC, Campbell M, Li J, Bowers J E, Tang H, Lyons E, Ferguson AA, Narzisi G, Nelson DR, Blaby-Haas CE, Gschwend AR, Jiao Y, Der JP, Zeng F, Han J, Min XJ, Hudson KA, Singh R, Grennan AK, Karpowicz SJ, Watling JR, Ito K, Robinson SA,Hudson ME, Yu Q, Mockler TC, Carroll A, Zheng Y, Sunkar R, Jia R, Chen N, Arro J, Wai CM, Wafula E, Spence A, Han Y, Xu L, Zhang J, Peery R, Haus MJ, Xiong W, Walsh JA, Wu J, Wang ML, Zhu YJ, Paull RE, Britt AB, Du C, Downie SR, Schuler MA, Michael TP, Long SP, Ort DR, Schopf JW, Gang DR, Jiang N, Yandell M,dePamphilis CW, Merchant SS, Paterson AH, Buchanan BB, Li S, Shen-Miller J (2013) Genome of the long-living sacred lotus (Nelumbo nucifera Gaertn.). Genome Biol 14:R41. doi:10.1186/gb-2013-14-5-r41
  • Mizoi J, Shinozaki K, Yamaguchi-Shinozaki K (2012) AP2/ERF family transcription factors in plant abiotic stress responses. Biochim Biophys Acta 1819:86–96. doi:10.1016/j.bbagrm.2011.08.004
  • Munns R, James R, Läuchli A (2006) Approaches to increasing the salt tolerance of wheat and other cereals. J Exp Bot 57:1025–1043. doi:10.1093/jxb/erj100
  • Murguia JR, Belles JM, Serrano R (1995) A salt-sensitive 30(20), 50-bisphosphate nucleotidase involved in sulfate activation. Science 267:232–234. doi:10.1126/science.7809627
  • Nakashima K, Shinwari ZK, Sakuma Y, Seki M, Miura S, Shinozaki K, Yamaguchi-Shinozaki K (2000) Organization and expression of two Arabidopsis DREB2 genes encoding DRE-binding proteins involved in dehydration- and highsalinity- responsive gene expression. Plant Mol Biol 42:657–665. doi:10.1023/A: 1006321900483
  • Nayak PN, Balaji J, Upadhyaya HD, Hash CT, Kishor PBK, Chattopadhyay D, Rodriquez LM, Blair Matthew W, Baum Michael, McNally Kenneth, This Dominique, Hoisington David A, Varshney Rajeev K (2009) Isolation and sequence analysis of DREB2A homologues in three cereal and two legume species. Plant Sci 177:460–467. doi:10.1016/j.plantsci.2009.07.009
  • Reis RR, da Cunha BADB, Martins PK, Martins MTB, Alekcevetch JC, Chalfun-Júnior A, Andrade AC, Ribeiro AP, Qin F, Mizoi J, Yamaguchi-Shinozaki K, Nakashima K, Carvalho JFC, de Sousa CAF, Nepomuceno AL, Kobayashi AK, Molinari HBC (2014) Induced over-expression of AtDREB2A CA improves drought tolerance in sugarcane. Plant Sci 221–222:59–68. doi:10.1016/j. plantsci.2014.02.003
  • Renato BRAZ, Hechenleitner AAW, Cavalcanti OA (2007) Extraction, structural modification and characterization of lotus roots polysaccharides (Nelumbo nucifera Gaertn). Excipient with potential application in modified drug delivery systems. Lat Am J Pharm 26:706–710
  • Sakamoto Y (1977) Lotus. Hosei University Press, Tokyo [in Japanese]
  • Sakuma Y, Liu Q, Dubouzet JG, Abe H, Shinozaki K, Yamaguchi-Shinozaki K (2002) DNA-binding specificity of the ERF/AP2 domain of Arabidopsis DREBs, transcription factors involved in dehydration- and cold-inducible gene expression. Biochem Biophys Res Commun 290:998–1009. doi:10.1006/bbrc.2001.6299
  • Sakuma Y, Maruyama K, Qin F, Osakabe Y, Shinozaki K, Yamaguchi-Shinozaki K (2006) Dual function of an Arabidopsis transcription factor DREB2A in water-stressresponsive and heatstress-responsive gene expression. Proc Natl Acad Sci USA 103:18822–18827. doi:10.1073/pnas.0605639103
  • Salt DE (2004) Update on plant ionomics. Plant Physiol 136:2451–2456. doi:10.1104/pp.104.047753
  • Seki M, Narusaka M, Ishida J, Nanjo T, Fujita M, Oono Y, Kamiya A, Nakajima M, Enju A, Sakurai T (2002) Monitoring the expression profiles of 7000 Arabidopsis genes under drought, cold and high-salinity stresses using a full-length cDNA microarray. Plant J 31:279–292. doi:10.1046/j.1365-313X.2002.01359.x
  • Sembdner G, Parthie B (1993) The biochemistry and the physiological and molecular actions of jasmonates. Ann Rev Plant Biol 44:569–589
  • Shabala S, Cuin TA (2008) Potassium transport and plant salt tolerance. Physiol Plant 133:651–669. doi:10.1111/j.1399-3054.2007.01008
  • Shen-Miller J (2002) Sacred lotus, the long-living fruits of China antique. Seed Sci Res 14:131–143
  • Slocum PD, Robinson P (1996) Water gardening, water lilies and lotuses. Timber Press, Portland
  • Sun JW, Peng XJ, Fan WH, Tang MJ, Liu J, Shen SH (2014) Functional analysis of BpDREB2 gene involved in salt and drought response from a woody plant Broussonetia papyrifera. Gene 535:140–149. doi:10.1016/j.gene.2013.11.047
  • Terashima M, Awano K, Honda Y, Yoshino N, Mori T, Fujita H, Ohashi Y, Seguchi O, Kobayashi K, Yamagishi M, Fitzgerald PJ, Yock PG, Maeda K (2011) ‘‘Arteries within the artery’’ after kawasaki diease-A lotus root appearance by intravascular ultrasound. Circulation. doi:10.1161/01.CIR.0000030708.86783.92
  • Tester M, Davenport R (2003) Na+ tolerance and Na+ transport in higher plants. Ann Bot 91:503–527. doi:10.1093/aob/mcg058
  • Wang X, Li Y, Ji W, Bai X, Cai H, Zhu D, Sun XL, Chen LJ, Zhu YM (2011) A novel Glycine soja tonoplast intrinsic protein gene responds to abiotic stress and depresses salt and dehydration tolerance in transgenic Arabidopsis thaliana. J Plant Physiol. doi:10.1016/j.jplph.2011.01.016
  • Xue Y, Wang YY, Peng RH, Zhen JL, Zhu B, Gao JJ, Zhao W, Han HJ, Yao QH (2014) Transcription factor MdCBF1 gene increases freezing stress tolerance in transgenic Arabidopsis thaliana. Biol Plant 58:499–506. doi:10.1007/s10535-014-0432-7
  • Yamaguchi-Shinozaki K, Shinozaki K (1994) A novel cis-acting element in an Arabidopsis gene is involved in responsiveness to drought, low temperature, or high-salt stress. Plant Cell 6:251–264. doi:10.1105/tpc.6.6.251
  • Yamaguchi-Shinozaki K, Shinozaki K (2005) Organization of cis-acting regulatory elements in osmotic- and cold-stress responsive promoters. Trends Plant Sci 10:88–94. doi:10.1016/j.tplants. 2004.12.012
  • Yang S, Zeevaart J (2006) Expression of ABA 80-hydroxylases in relation to leaf water relations and seed development in bean. Plant J 47:675–686. doi:10.1111/j.1365-313X.2006.02815.x
  • Yokotani N, Higuchi M, Kondou Y, Ichikawa T, Iwabuchi M, Hirochika H, Matsui M, Oda K (2011) A novel chloroplast protein, CEST induces tolerance to multiple environmental stresses and reduces photooxidative damage in transgenic Arabidopsis. J Exp Bot 62:557–569. doi:10.1093/jxb/erq
  • Zhang H, Mao X, Jing R, Chang X, Xie H (2011) Characterization of a common wheat (Triticum aestivum L.) TaSnRK2. 7 gene involved in abiotic stress responses. J Exp Bot 62:975–988
  • Zhou ML, Ma JT, Zhao YM, Wei YH, Tang YX, Wu YM (2012) Improvement of drought and salt tolerance in Arabidopsis and Lotus corniculatus by overexpression of a novel DREB transcription factor from Populus euphratica. Gene 506:10–17. doi:10.1016/j.gene.2012.06.089
Typ dokumentu
Identyfikator YADDA
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.