PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
2015 | 37 | 10 |

Tytuł artykułu

Proteomics of embryogenic and non-embryogenic calli of a Liriodendron hybrid

Autorzy

Warianty tytułu

Języki publikacji

EN

Abstrakty

EN
An increasing interest is focused on somatic embryogenesis induction in plants. This process usually generates both embryogenic calli (EC) and non-embryogenic calli (NEC) from the same explant. To identify specific proteins involved in embryogenesis competence, a comparative proteomics of EC and NEC in Liriodendron hybrid was performed. Proteins of EC and NEC were separated by two-dimensional gel electrophoresis (2-DE) and 14 proteins specific embryogenesis were characterized by matrix-assisted laser desorption ionization time-of-flight/- time-of-flight. Among these identifying proteins, profilin may be indispensable for cell survival and division, and eIF- 5A may play a functional role in embryogenic competence and further embryo development. Regulation of programmed cell death by cathepsin b-like cysteine proteinase and proteasome 20S beta1.1 subunit may have an essential part in maintaining cellular pluripotency and reprogramming for embryogenic mass. Reactive oxygen species (ROS) have a central effect on triggering cell division. However, methionine sulfoxide reductase is probably involved in protecting the cell from damage from excessive reactive oxygen species. Expression of EF-hand family proteins in embryogenic calli may mediate the calcium ion gradient for polarization and organ patterning. These identified embryogenic calli-specific proteins provide clues to understanding low conversion rate from calli cells to embryogenic cells.

Słowa kluczowe

Wydawca

-

Rocznik

Tom

37

Numer

10

Opis fizyczny

Article: 211 [8 p.], fig.,ref.

Twórcy

autor
  • Co-Innovation Center for the Sustainable Forestry in Southern, Nanjing Forestry University, Nanjing, 210037, People’s Republic of China
  • Department of Plant and Microbial Biology, University of California, Berkeley, CA, 94720, USA
autor
  • Co-Innovation Center for the Sustainable Forestry in Southern, Nanjing Forestry University, Nanjing, 210037, People’s Republic of China
autor
  • Co-Innovation Center for the Sustainable Forestry in Southern, Nanjing Forestry University, Nanjing, 210037, People’s Republic of China
autor
  • Co-Innovation Center for the Sustainable Forestry in Southern, Nanjing Forestry University, Nanjing, 210037, People’s Republic of China
autor
  • Co-Innovation Center for the Sustainable Forestry in Southern, Nanjing Forestry University, Nanjing, 210037, People’s Republic of China

Bibliografia

  • Allu PK, Marada A, Boggula Y, Karri S, Krishnamoorthy T, Sepuri NB (2015) Methionine sulfoxide reductase 2 reversibly regulates Mge1, a cochaperone of mitochondrial Hsp70, during oxidative stress. Mol Biol Cell 26:406–419
  • Anil VS, Rao KS (2000) Calcium-mediated signaling during sandalwood somatic embryogenesis. Role for exogenous calcium as second messenger. Plant Physiol 123:1301–1312
  • Arruda SCC, Souza GM, Almeida M, Gonc¸alves AN (2000) Anatomical and biochemical characterization of the calcium effect on Eucalyptus urophylla callus morphogenesis in vitro. Plant Cell Tissue Organ Cult 63:142–154
  • Bian F, Zheng C, Qu F, Gong X, You C (2010) Proteomic analysis of somatic embryogenesis in Cyclamen persicum Mill. Plant Mol Biol Rep 28:22–31
  • Bozhkov PV, Filonova LH, Suarez MF, Helmersson A, Smertenko AP, Zhivotovsky B, von Arnold S (2004) VEIDase is a principal caspase-like activity involved in plant programmed cell death and essential for embryonic pattern formation. Cell Death Differ 11:175–182
  • Buckley SM, Aranda-Orgilles B, Strikoudis A, Apostolou E, Loizou E, Moran-Crusio K, Farnsworth CL, Koller AA, Dasgupta R, Silva JC, Stadtfeld M, Hochedlinger K, Chen EI, Aifantis I (2013) Regulation of pluripotency and cellular reprogramming by the ubiquitin-proteasome system. Cell Stem Cell 11:783–798
  • Chatelain E, Satour P, Laugier E, Vu BL, Payet N, Rey P, Montrichard F (2013) Evidence for participation of the methionine sulfoxide reductase repair system in plant seed longevity. Proc Natl Acad Sci USA 110:3633–3638
  • Chesarone MA, DuPage AG, Goode BL (2010) Unleashing formins to remodel the actin and microtubule cytoskeletons. Nat Rew Mol Cell Bio 11:62–74
  • Day IS, Reddy VS, Ali GS, Reddy ASN (2002) Analysis of EF-handcontaining proteins in Arabidopsis. Genome Biol. doi:10.1186/gb-2002-3-10-research0056
  • de Jong AJ, Schmidt ED, de Vries SC (1993) Early events in higherplant embryogenesis. Plant Mol Biol 22:367–377
  • Dihazi H, Dihazi GH, Jahn O, Meyer S, Nolte J, Asif AR, Mueller GA, Engel W (2011) Multipotent adult germline stem cells and embryonic stem cells functional proteomics revealed an important role of eukaryotic initiation factor 5A (Eif5a) in stem cell differentiation. J Proteome Res 10:1962–1973
  • Dresselhaus T, Cordts S, Lorz H (1999) A transcript encoding translation initiation factor eIF-5A is stored in unfertilized egg cells of maize. Plant Mol Biol 39:1063–1071
  • Dunn MJ (2007) Two-dimensional electrophoretic analysis of proteins associated with somatic embryogenesis development in Cupressus sempervirens L. Electrophoresis 20:1109–1119
  • Endress V, Barriuso J, Ruperez P, Pedro Martin J, Blazquez A, Villalobos N, Guerra H, Martin L (2009) Differences in cell wall polysaccharide composition between embryogenic and nonembryogenic calli of Medicago arborea L. Plant Cell, Tissue Organ Cult 97:323–329
  • Fehér A (2014) Somatic embryogenesis-Stress-induced remodeling of plant cell fate. Biochim Biophys Acta-GRM. doi:10.1016/j.bbagrm.2014.07.005
  • Feher A, Otvos K, Pasternak TP, Szandtner AP (2008) The involvement of reactive oxygen species (ROS) in the cell cycle activation (G(0)-to-G(1) transition) of plant cells. Plant Signal Behav 3:823–826
  • Feng H, Chen Q, Feng J, Zhang J, Yang X, Zuo J (2007) Functional characterization of the arabidopsis eukaryotic translation initiation factor 5A-2 that plays a crucial role in plant growth and development by regulating cell division, cell growth, and cell death. Plant Physiol 144:1531–1545
  • Friehs I (2008) Proteasome inhibition in hypertrophied myocardium. Am J Physiol Heart Circ Physiol 295:H1373–H1374
  • Ge ZY, Wan PJ, Li GQ, Xia Y, Han ZJ (2014) Characterization of cysteine protease-like genes in the striped rice stem borer, Chilo suppressalis. Genome. doi:10.1139/gen-2013-0188
  • Guillen G, Lopez-Sanchez LML, San Roman-Roque C, Sanchez F, Villanueva MA (2001) Biochemical characterization of profilin from seeds of Phaseolus vulgaris L. Plant Cell Physiol 42:54–62
  • Hussey PJ, Ketelaar T, Deeks MJ (2006) Control of the actin cytoskeleton in plant cell growth. Annu Rev Plant Biol
  • Imin N, De Jong F, Mathesius U, van Noorden G, Saeed NA, Wang XD, Rose RJ, Rolfe BG (2004) Proteome reference maps of Medicago truncatula embryogenic cell cultures generated from single protoplasts. Proteomics 4:1883–1896
  • Imin N, Nizamidin M, Daniher D, Nolan KE, Rose RJ, Rolfe BG (2005) Proteomic analysis of somatic embryogenesis in Medicago truncatula. Explant cultures grown under 6-benzylaminopurine and 1-naphthalene acetic acid treatments. Plant Physiol 137:1250–1260
  • Jian R, Cheng X, Jiang J, Deng S, Hu F, Zhang J (2007) A cDNAbased random RNA interference library for functional genetic screens in embryonic stem cells. Stem Cells 25:1904–1912
  • Jockusch BM, Murk K, Rothkegel M (2007) The profile of profilins. Rev Physiol Biochem Pharmacol 159:131–149
  • Karami O, Aghavaisi B, Mahmoudi Pour A (2009) Molecular aspects of somatic-to-embryogenic transition in plants. J Chem Biol 2:177–190
  • Kozieradzka-Kiszkurno M, Swierczynska J, Bohdanowicz J (2011) Embryogenesis in Sedumacre L.: structural and immunocytochemical aspects of suspensor development. Protoplasma 248:775–784
  • Kretsinger RH, Nockolds CE (1973) Carp muscle calcium-binding protein. II. Structure determination and general description. J Biol Chem 248:3313–3326
  • Lemanski BLF, Zhang C, Kochegarov A, Moses A, Lian W, Meyer J, Jia P, Jia Y, Li Y, Webster KA, Huang X, Hanna M, Achary MP, Lemanski SL, Weissbach H (2012) Protection of mouse embryonic stem cells from oxidative stress by methionine sulfoxide reductases, InTech
  • Lippert D, Zhuang J, Ralph S, EllisDE, GilbertM,Olafson R, RitlandK, Ellis B, Douglas CJ, Bohlmann J (2005) Proteome analysis of early somatic embryogenesis in Picea glauca. Proteomics 5:461–473
  • Livanos P, Apostolakos P, Galatis B (2012) Plant cell division: rOS homeostasis is required. Plant Signal Behav 7:771–778
  • Lyngved R, Renaut J, Hausman J, Iversen T, Hvoslef-Eide A (2008) Embryo-specific proteins in Cyclamen persicum analyzed with 2-D DIGE. J Plant Growth Regul 27:353–369
  • Marsoni M, Bracale M, Espen L, Prinsi B, Negri AS, Vannini C (2008) Proteomic analysis of somatic embryogenesis in Vitis vinifera. Plant Cell Rep 27:347–356
  • Martinez M, Rubio-Somoza I, Carbonero P, Diaz I (2003) A cathepsin B-like cysteine protease gene from Hordeum vulgare (gene CatB) induced by GA in aleurone cells is under circadian control in leaves. J Exp Bot 54:951–959
  • Moon J, Parry G, Estelle M (2004) The ubiquitin-proteasome pathway and plant development. Plant Cell 16:3181–3195
  • Mtango NR, Latham KE (2007) Ubiquitin proteasome pathway gene expression varies in rhesus monkey oocytes and embryos of different developmental potential. Physiol Genomics 31:1–14
  • Murashige T, Skoog F (1962) A revised medium for rapid growth and bioassays with tobacco tissue cultures. Physiol Plant 15:473–497
  • Namasivayam P (2007) Acquisition of embryogenic competence during somatic embryogenesis. Plant Cell, Tissue Organ Cult 90:1–8
  • Namasivayam P, Skepper J, Hanke D (2006) Identification of a potential structural marker for embryogenic competency in the Brassica napus spp. oleifera embryogenic tissue. Plant Cell Rep 25:887–895
  • Naujokat C, Hoffmann S (2002) Role and function of the 26S proteasome in proliferation and apoptosis. Lab Invest 82:965–980
  • Nogueira FC, Gonc¸alves EF, Jereissati ES, Santos M, Costa JH, Oliveira-Neto OB, Soares AA, Domont GB, Campos FA (2007) Proteome analysis of embryogenic cell suspensions of cowpea (Vigna unguiculata). Plant Cell Rep 26:1333–1343
  • Park MH (2006) The post-translational synthesis of a polyaminederived amino acid, hypusine, in the eukaryotic translation initiation factor 5A (eIF5A). J Biochem 139:161–169
  • Parreiras-e-Silva LT, Luchessi AD, Reis RI, Oliver C, Jamur MC, Ramos RGP, Oliveira EB, Curi R, Costa-Neto CM (2010) Evidences of a role for eukaryotic translation initiation factor 5A (eIF5A) in mouse embryogenesis and cell differentiation. J Cell Physiol Suppl 225:500–505
  • Pasternak TP, Prinsen E, Ayaydin F, Miskolczi P, Potters G, Asard H, Van Onckelen HA, Dudits D, Feher A (2002) The role of auxin, pH, and stress in the activation of embryogenic cell division in leaf protoplast-derived cells of alfalfa. Plant Physiol 129:1807–1819
  • Pasternak TP, Otvos K, Domoki M, Feher A (2007) Linked activation of cell division and oxidative stress defense in alfalfa leaf protoplast-derived cells is dependent on exogenous auxin. Plant Growth Regul 51:109–117
  • Rani AR, Reddy VD, Prakash Babu P, Padmaja G (2005) Changes in protein profiles associated with somatic embryogenesis in peanut. Biol Plant 49:347–354
  • Rantong G, Gunawardena AHLAN (2015) Programmed cell death: genes involved in signaling, regulation, and execution in plants and animals. Botany 93:193–210
  • Rawe VY, Payne C, Schatten G (2006) Profilin and actin-related proteins regulate microfilament dynamics during early mammalian embryogenesis. Hum Reprod 21:1143–1153
  • Santner A, Estelle M (2010) The ubiquitin-proteasome system regulates plant hormone signaling. Plant J 61:1029–1040
  • Sghaier-Hammami B, Drira N, Jorrín-Novo JV (2009) Comparative 2-DE proteomic analysis of date palm (Phoenix dactylifera L.) somatic and zygotic embryos. J Proteomics 73:161–177
  • Shevchenko A, Wilm M, Vorm O, Mann M (1996) Mass spectrometric sequencing of proteins silver-stained polyacrylamide gels. Anal Chem 68:850–858
  • SilvaRde C, CarmoLS, LuisZG, Silva L, Scherwinski-Pereira JE,Mehta A (2014) Proteomic identification of differentially expressed proteins during the acquisition of somatic embryogenesis in oil palm (Elaeis guineensis Jacq.). J Proteomics 104:112–127
  • Silveira V, de Vita AM, Macedo AF, Dias MFR, Floh ES, Santa-Catarina C (2013) Morphological and polyamine content changes in embryogenic and non-embryogenic callus of sugarcane. Plant cell Tiss Organ Cult 114:351–364
  • Smertenko A, Bozhkov PV (2014) Somatic embryogenesis: life and death processes during apical–basal patterning. J Exp Bot. doi:10.1093/jxb/eru005
  • Sun L, Wu Y, Zou H, Su S, Li S, Shan X, Xi Jinghui, Yuan Y (2013) Comparative proteomic analysis of the H99 inbred maize (Zea mays L.) line in embryogenic and non-embryogenic callus during somatic embryogenesis. Plant cell Tiss Organ Cult 113:103–119
  • Thompson JE, Hopkins MT, Taylor C, Wang TW (2004) Regulation of senescence by eukaryotic translation initiation factor 5A: implications for plant growth and development. Trends Plant Sci 9:174–179
  • Varhaníková M, Uvackova L, Skultety L, Pretova A, Obert B, Hajduch M (2014) Comparative quantitative proteomic analysis of embryogenic and non-embryogenic calli in maize suggests the role of oxylipins in plant totipotency. J Proteomics 104:57–65
  • Wang S-L, Fan K-Q, Yang X, Lin Z-X, Xu X-P, Yang K-Q (2008) CabC, an EF-hand calcium-binding protein, is involved in Ca2+-mediated regulation of spore germination and aerial hypha formation in Streptomyces coelicolor. J Bacteriol 190:4061–4068
  • Wang F, Jing Y, Wang Z, Mao T, Samaj J, Yuan M, Ren H (2009) Arabidopsis profilin isoforms, PRF1 and PRF2 show distinctive binding activities and subcellular dsistributions. J Integr Plant Biol 51:113–121
  • Wang T-Z, Zhang J-L, Tian Q-Y, Zhao M-G, Zhang W-H (2013) A medicago truncatula EF-hand family gene, MtCaMP1, is involved in drought and salt stress tolerance. PLoS One. doi:10.1371/journal.pone.0058952
  • Wasteneys GO, Yang YB (2004) New views on the plant cytoskeleton. Plant Physiol 136:3884–3891
  • WiT, Heintz D, Van Dorsselaer A, Serek M, Braun HP (2006) Proteomic analyses of somatic and zygotic embryos of Cyclamen persicum Mill. reveal new insights into seed and germination physiology. Planta 4:508–519
  • Witke W, Sutherland JD, Sharpe A, Arai M, Kwiatkowski DJ (2001) Profilin I is essential for cell survival and cell division in early mouse development. Proc Natl Acad Sci USA 98:3832–3836
  • Ye JS, Wang ZR (2002) Genetic analysis of heterosis for hybrid tulip tree. Scentia Silvae Sinicae 38:67–71
  • Zhao P, Zhou X-M, Zhang L-Y, Wang W, Ma L-G, Yang L-B, Peng X-B, Bozhkov PV, Sun M-X (2013) A bipartite molecular module controls cell death activation in the basal cell lineage of plant embryos. PLoS Biol. doi:10.1371/journal.pbio.1001655
  • Zhen Y, Shi J (2011) Evaluation of sample extraction methods for proteomic analysis of coniferous seeds. Acta Physiol Plant 33:1623–1630
  • Zhen Y, Zhao Z-Z, Zheng R-H, Shi J (2012) Proteomic analysis of early seed development in Pinus massoniana L. Plant Physiol Biochem 54:97–104
  • Zhu D-Y, Cui R, Zhang Y-Y, Li H, Zhou L-M, Lou Y-J (2011) Involvement of ubiquitin-proteasome system in icariin-induced cardiomyocyte differentiation of embryonic stem cells using twodimensional gel electrophoresis. J Cell Biochem 112:3343–3353

Typ dokumentu

Bibliografia

Identyfikatory

Identyfikator YADDA

bwmeta1.element.agro-49f4a045-9d0d-4cfc-a7f8-727d300502a3
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.