PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
2015 | 37 | 02 |

Tytuł artykułu

Production of secondary metabolites by mycorrhizal plants with medicinal or nutritional potential

Warianty tytułu

Języki publikacji

EN

Abstrakty

EN
This review surveys the results of recent studies and concludes that inoculation with arbuscular mycorrhizal fungi can increase the production of plant secondary metabolites that have medicinal or nutritional potential.

Słowa kluczowe

Wydawca

-

Rocznik

Tom

37

Numer

02

Opis fizyczny

Article: 27 [12 p.], ref.

Twórcy

  • Laboratorio de Enzimologia e Fitoquímica Aplicada a Micologia (LEFAM), Universidade de Pernambuco, Campus Petrolina, Petrolina, PF 56328-900, Brazil
  • Centro de Ciencias Biologicas, Departamento de Micologia, Universidade Federal de Pernambuco, Recife, PE 50740-465, Brazil
  • Laboratorio de Enzimologia e Fitoquímica Aplicada a Micologia (LEFAM), Universidade de Pernambuco, Campus Petrolina, Petrolina, PF 56328-900, Brazil
  • Programa de Pos-Graduacao Em Biologia Celular E Molecular Aplicada, Instituto De Ciencias Biologicas, ICB/Universidade de Pernambuco, Recife, PE 50100-130, Brazil
autor
  • Centro de Ciencias Biologicas, Departamento de Micologia, Universidade Federal de Pernambuco, Recife, PE 50740-465, Brazil

Bibliografia

  • Abu-Zeyad R, Khan AG, Khoo C (1999) Occurrence of arbuscular mycorrhiza in Castanospermum australe A. Cunn. & C. Fraser and effects on growth and production of castanospermine. Mycorrhiza 9:111–117
  • Agra MF, Freitas PF, Barbosa-Filho JM (2007) Synopsis of the plants known as medicinal and poisonous in Northeast of Brazil. Braz J Pharmacogn 17:114–140
  • Akiyama K, Hayashi H (2002) Arbuscular mycorrhizal funguspromoted accumulation of two new triterpenoids in Cucumber roots. Biosci Biotechnol Biochem 66:762–769
  • Andrade SAL, Malik S, Sawaya ACHF, Bottcher A, Mazzafera P (2013) Association with arbuscular mycorrhizal fungi influences alkaloid synthesis and accumulation in Catharanthus roseus and Nicotiana tabacum plants. Acta Physiol Plant 35:867–880
  • Anjos ECT, Cavalcante UMT, Santos VF, Maia LC (2005) Produção de mudas de maracujazeiro-doce micorrizadas em solo desinfestado e adubado com fósforo. Pesq Agropec Bras 40:345–351
  • Araim G, Saleem A, Arnason JT, Charest C (2009) Root colonization by an arbuscular mycorrhizal (AM) fungus increases growth and secondary metabolism of purple coneflower, Echinacea purpurea (L.) Moench. J Agric Food Chem 57:2255–2258
  • Baslam M, Garmendia I, Goicoechea N (2011) Arbuscular mycorrhizal fungi (AMF) improved growth and nutritional quality of greenhouse-grown lettuce. J Agric Food Chem 59:5504–5515
  • Baslam M, Esteban R, García-Plazaola JI, Goecoechea N (2013a) Effectiveness of arbuscular mycorrhizal fungi (AMF) for inducing the accumulation of major carotenoids, chlorophylls and tocopherol in green and red leaf lettuces. Appl Microbiol Biotechnol 97:3119–3128
  • Baslam M, Garmendia I, Goicoechea N (2013b) The arbuscular mycorrhizal symbiosis can overcome reductions in yeld and nutritional quality in greenhouse-lettuces cultivated at inappropriate growing seasons. Sci Hortic 164:145–154
  • Berbara RLL, Souza FA, Fonseca HMAC (2006) Fungos micorrízicos arbusculares: muito além da nutrição. In: Fernandes MS (ed) Nutrição Mineral de Plantas. Sociedade Brasileira de Ciência do Solo, Viçosa, pp 53–78
  • Bharti N, Baghel S, Barnawal D, Yadav A, Kaira A (2013) The greater effectiveness of Glomus mosseae and Glomus intraradices in improving productivity, oil content and tolerance of saltstressed menthol mint (Mentha arvensis). J Sci Food Agric 93:2154–2161
  • Caldwell CR, Britz SJ (2006) Effect of supplemental ultraviolet radiation on the carotenoid and chlorophyll composition of green house-grown leaf lettuce (Lactuca sativa L.) cultivars. J Food Compos Anal 19:637–644
  • Carvalho JCT, Gosmann G, Schenkel EP (2007) Compostos fenólicos simples e heterosídicos. In: Simões CMO, Schenkel EP, Gosmann G, Mell JCP, Mentz LA, Petrovick PR (eds) Farmacognosia: da planta ao medicamento. UFGS, Porto Alegre, pp 519–535
  • Castellanos-Morales V, Villegas J, Wendelin S, Vierheilig H, Eder R, Cárdenas-Navarro R (2010) Root colonization by the arbuscular mycorrhizal fungus Glomus intraradices alters the quality of strawberry fruits (Fragaria x ananassa Duch.) at different nitrogen levels. J Sci Food Agric 90:1774–1782
  • Cavalcante UMT, Maia LC, Nogueira RJMC, Santos VF (2001) Respostas fisiológicas em mudas de maracujazeiro amarelo (Passiflora edulis Sims. F. flavicarpa Deg.) inoculadas com fungos micorrízicos arbusculares e submetidas a estresse hídrico. Acta Bot Bras 15:379–390
  • Cavalcante UMT, Maia LC, Melo AMY, Santos VF (2002) Influência da densidade de fungos micorrízicos arbusculares na produção de mudas de maracujazeiro-amarelo. Pesq Agropec Bras 37:643–649
  • Cavaleiro C (2007) Plantas aromáticas e óleos essenciais em farmácia e medicina. In: Figueiredo AC, Barroso JG, Pedro LG (eds) Potencialidades e aplicações das plantas aromáticas e medicinais. Edição da Faculdade de Ciências da Universidade de Lisboa, Centro de Biotecnologia Vegetal, Lisboa, Curso teóricoprático, pp 55–62
  • Ceccarelli N, Curadi M, Martelloni L, Sbrana C, Picciarelli P, Giovannetti M (2010) Mycorrhizal colonization impacts on phenolic content and antioxidant properties of artichoke leaves and flower heads two years after field transplant. Plant Soil 335:311–323
  • Chaudhary V, Kapoor R, Bhatnagar AK (2008) Effectiveness of two arbuscular mycorrhizal fungi on concentrations of essential oil and artemisinin in three accessions of Artemisia annua L. Appl Soil Ecol 40:174–181
  • Chen S, Jin W, Liu A, Zhang S, Liu D, Wang F, Lin X, He C (2013) Arbuscular mycorrhizal fungi (AMF) increase growth and secondary metabolism in cucumber subjected to low temperature stress. Sci Hortic 160:222–229
  • Chu EY, Moller MRF, Carvalho JG (2001) Efeitos da inoculação micorrízica em mudas de gravioleira em solo fumigado e não fumigado. Pesq Agropec Bras 36:671–680
  • Copetta A, Lingua G, Berta G (2006) Effects of three AM fungi on growth, distribution of glandular hairs, and essential oil production in Ocimum basilicum L. var. Genovese. Mycorrhiza 16:485–494
  • Copetta A, Lingua G, Bardi L, Masoero G, Berta G (2007) Influence of arbuscular mycorrhizal fungi on growth and essential oil composition in Ocimum basilicum var. Genovese. Caryologia 60:106–110
  • Cosme M, Franken P, Mewis I, Baldermann S, Wurst S (2014) Arbuscular mycorrhizal fungi affect glucosinolate and mineral element composition in leaves of Moringa oleifera. Mycorrhiza 24:565–570
  • Dave S, Tarafdar JC (2011) Stimulatory synthesis of saponin by mycorrhizal fungi in safed musli (Chlorophytum borivilianum) tubers. Int Res J Agric Sci Soil Sci 1:137–141
  • Eftekhari M, Alizadeh M, Ebrahimi P (2012) Evaluation of the total phenolics and quercetin content of foliage in mycorrhizal grape (Vitis vinifera L.) varieties and effect of postharvest drying on quercetin yield. Ind Crop Prod 38:160–165
  • Fester T, Maier W, Strack D (1999) Accumulation of secondary compounds in barley and wheat roots in response to inoculation with an arbuscular mycorrhizal fungus and co-inoculation with rhizosphere bacteria. Mycorrhiza 8:241–246
  • Freitas MSM, Martins MA, Vieira IJC (2004a) Produção de óleos essenciais de Mentha arvensis em resposta á inoculação de fungos micorrízicos arbusculares. Pesq Agropec Bras 39:887–894
  • Freitas MSM, Martins MA, Carvalho AJC, Carneiro RFV (2004b) Crescimento e produção de fenóis totais em carqueja [Baccharis trimera (Less.) DC.] em resposta á inoculação com fungos micorrízicos arbusculares, na presença e na ausência de adubação mineral. Rev Bras Plantas Med 6:30–34
  • Geneva MP, Stancheva IV, Boychinova MN, Mincheva NH, Yonova PA (2010) Effects of foliar fertilization and arbuscular mycorrhizal colonization on Salvia officinalis L. growth, antioxidant capacity, and essential oil composition. J Sci Food Agric 90:696–702
  • Ghasemzadeh A, Jaafar HZE, Rahmat A (2010) Elevated carbon dioxide increases contents of flavonoids and phenolics compound, and antioxidant activities in Malaysian Young Ginger (Zingiber officinale Roscoe) varieties. Molecules 15:7907–7922
  • Giovannetti M, Avio L, Barale R, Ceccarelli N, Cristofani R, Iezzi A, Mignolli F, Picciarelli P, Pinto B, Reali D, Sbrana C, Scarpato R (2012) Nutraceutical value and safety of tomato fruits produced by mycorrhizal plants. Brit J Nutr 107:242–251
  • Gobbo-Neto L, Lopes N (2007) Plantas medicinais: fatores de influência no conteúdo de metabólitos secundários. Quím Nova 30:374–381
  • Gogoi P, Singh RK (2011) Differential effect of some arbuscular mycorrhizal fungi on growth of Piper longum L. (Piperaceae). Indian J Sci Technol 4:119–125
  • Gupta ML, Prasad A, Ram M, Kumar S (2002) Effect of the vesicular-arbuscular mycorrhizal (VAM) fungus Glomus fasciculatum on the essential oil yield related characters and nutrient acquisition in the crops of different cultivars of menthol mint (Mentha arvensis) under field conditions. Biores Technol 81:77–79
  • Heidari M, Karami V (2014) Effects of different mycorrhiza species on grain yield, nutrient uptake and oil content of sunflower under water stress. J Saudi Soc Agric Sci 13:9–13
  • Heldt HW (2005) Plant biochemistry, 3rd edn. Elsevier Academic Press, London
  • Ibrahim MH, Jaafar HZE (2011) Involvement of carbohydrate, protein and phenylalanine ammonia lyase in up-regulation of secondary metabolites in Labisia pumila under various CO2 and N2 levels. Molecules 16:4172–4190
  • Janos DP (2007) Plant responsiveness to mycorrhizas differs from dependence upon mycorrhizas. Mycorrhiza 17:75–91
  • Kapoor R, Giri B, Mukerji KG (2002a) Glomus macrocarpum: a potential bioinoculant to improve essential oil quality and concentration in Dill (Anethum graveolens L.) and Carum (Trachyspermum ammi (Linn.) Sprague). World J Microbiol Biotechnol 18:459–463
  • Kapoor R, Giri B, Mukerji KG (2002b) Mycorrhization of coriander (Coriandrum sativum L.) to enhance the concentration and quality of essential oil. J Sci Food Agric 82:339–342
  • Kapoor R, Giri B, Mukerji KG (2004) Improved growth and essential oil yield and quality in Foeniculum vulgare mill on mycorrhizal inoculation supplemented with P-fertilizer. Biores Technol 93:307–311
  • Kapoor R, Chaudhary V, Bhatnagar AK (2007) Effects of arbuscular mycorrhiza and phosphorus application on artemisinin concentration in Artemisia annua L. Mycorrhiza 17:581–587
  • Karagiannidis T, Thomidis T, Lazari D, Panou-Filotheou E, Karagiannidou C (2011) Effect of three Greek arbuscular mycorrhizal fungi in improving the growth, nutrient concentration, and production of essential oils of orégano and mint plants. Sci Hort 129:329–334
  • Kaschuk G, Kuyper TW, Leffelaar PA, Hungria M, Giller KE (2009) Are the rates of photosynthesis stimulated by the carbon sink strength of rhizobial and arbuscular mycorrhizal symbioses? Soil Biol Biochem 41:1233–1244
  • Khalafallah AA, Abo-Ghalia HH (2008) Effect of arbuscular mycorrhizal fungi on the metabolic products and activity of antioxidant system in wheat plants subjected to short-term water stress, followed by recovery at different growth stages. J Appl Sci Res 4:559–569
  • Khaosaad T, Vierheilig H, Nell M, Zitterl-Eglseer K, Novak J (2006) Arbuscular mycorrhiza alter the concentration of essential oils in oregano (Origanum sp., Lamiaceae). Mycorrhiza 16:443–446
  • Khaosaad T, Krenn L, Medjakovic S, Ranner A, Lössl A, Nell M, Jungbauer A, Vierheilig H (2008) Effect of mycorrhization on the isoflavone content and the phytoestrogen activity of red clover. J Plant Physiol 165:1161–1167
  • Larose G, Chênevert R, Moutoglis P, Gagné S, Piché Y, Vierheilig H (2002) Flavonoid levels in roots of Medicago sativa are modulated by the developmental stage of the symbiosis and the root colonizing arbuscular mycorrhizal fungus. J Plant Physiol 159:1329–1339
  • Latef AAHA, Chaoxing H (2011) Effect of arbuscular mycorrhizal fungi on growth, mineral nutrition, antioxidant enzymes activity and fruit yield of tomato grown under salinity stress. Sci Hortic 127:228–233
  • Li Q, Kubota C (2009) Effects of supplemental light quality on growth and phytochemicals of baby leaf lettuce. Environ Exp Bot 67:59–64
  • Lingua G, Bona E, Manassero P, Marsano F, Todeschini V, Cantamessa S, Copetta A, Agostino G, Gamalero E, Berta G (2013) Arbuscular mycorrhizal fungi and plant growth-promoting pseudomonads increases anthocyanin concentration in strawberry fruits (Fragaria x ananassa var. Selva) in conditions of reduced fertilization. Int J Mol Sci 14:16207–16225
  • Lister CE, Lancaster JE, Walker JRL (1996) Developmental changes in enzymes of flavonoid biosynthesis in the skins of red and green apple cultivars. J Sci Food Agric 71:313–320
  • Lizarazo K, Fernández-Marín B, Becerril JM, García-Plazaola JI (2010) Ageing and irradiance enhance vitamin E content in green edible tissues from crop plants. J Sci Food Agric 90:1994–1999
  • Lohse S, Schliemann W, Ammer C, Kopka J, Strack D, Fester T (2005) Organization and metabolism of plastids and mitochondria in arbuscular mycorrhizal roots of Medicago truncatula. Plant Physiol 139:329–340
  • Maier W, Peipp H, Schimidt J, Wray V, Strack D (1995) Levels of terpenoid glycoside (blumenin) and cell wall-bound phenolics in some cereal mycorrhizas. Plant Physiol 109:465–470
  • Maier W, Hammer K, Dammann U, Schulz B, Strack D (1997) Accumulation of sesquiterpenoid cyclohexanone derivatives induced by an arbuscular mycorrhizal fungus in members of the Poaceae***. Planta 202:36–42
  • Mandal S, Evelin H, Giri B, Singh VP (2013) Arbuscular mycorrhiza enhances the production of stevioside and rebaudioside-A in Stevia rebaudiana via nutritional and non-nutritional mechanisms. Appl Soil Ecol 72:187–194
  • Manoharan PT, Shanmugaiah V, Balasubramanian N, Gomathinayagam S, Sharma MP, Muthuchelian K (2010) Influence of AM fungi on the growth and physiological status of Erythrina variegata Linn. grown under different water stress conditions. Eur J Soil Biol 46:151–156
  • Martens S, Mithöfer A (2005) Flavones and flavone synthases. Phytochemistry 66:2399–2407
  • Matsubara Y, Ishigaki T, Koshikawa K (2009) Changes in free amino acid concentrations in mycorrhizal strawberry plants. Sci Hortic 119:392–396
  • Morandi D, Bailey JA (1984) Isoflavonoid accumulation in soybean roots infected with vesicular-arbuscular mycorrhizal fungi. Phys Plant Path 24:357–364
  • Nagahashi G, Douds DD, Ferhatoglu Y (2010) Functional categories of root exudates compounds and their relevance to AM fungal growth. In: Koltai H, Kapulnik Y (eds) Arbuscular mycorrhizas: physiology and function. Springer, Dordrecht, pp 33–56
  • Nell M, Vötsch M, Vierheilig H, Steinkellner S, Zitterl-Eglseer K, Franz C, Novak J (2009) Effect of phosphorus uptake on growth and secondary metabolites of garden sage (Salvia officinalis L.). J Sci Food Agric 89:1090–1096
  • Nell M, Wawrosch C, Steinkellner S, Vierheilig H, Kopp B, Lössl A, Franz C, Novak J, Zitterl-Eglseer K (2010) Root colonization by symbiotic arbuscular mycorrhizal fungi increases sesquiterpenic acid concentration in Valeriana officinalis L. Planta Med 76:393–398
  • Oliveira MS, Campos MAS, Albuquerque UP, Silva FBS (2013) Arbuscular mycorrhizal fungi (AMF) affects biomolecules content in Myracrodruon urundeuva seedlings. Ind Crop Prod 50:244–247
  • Oliveira MS, Campos MAS, Albuquerque UP, Silva FBS (2014) Arbuscular mycorrhizal fungi and vermicompost to maximize the production of foliar biomolecules in Passiflora alata Curtis seedlings. J Sci Food Agric. doi:10.1002/jsfa.6767
  • Pedone-Bonfim MVL, Lins MA, Coelho IR, Santana AS, Silva FSB, Maia LC (2013) Mycorrhizal technology and phosphorus in the production of primary and secondary metabolites in cebil (Anadenanthera colubrina (Vell.) Brenan) seedlings. J Sci Food Agric 93:1479–1484
  • Peipp H, Maier W, Schmidt J, Wray V, Strack D (1997) Arbuscular mycorrhizal fungus-induced changes in the accumulation of secondary compounds in barley roots. Phytochemistry 44:581–587
  • Perner H, Rohn S, Driemel G, Batt N, Schwarz D, Kroh LW, George E (2008) Effect of nitrogen species supply and mycorrhizal colonization on organosulfur and phenolic compounds in onions. J Agric Food Chem 56:3538–3545
  • Ponce MA, Scervino JM, Erra-Balsells R, Ocampo JA, Godeas AM (2004) Flavonoids from shoots and roots of Trifolium repens (white clover) grown in presence or absence of the arbuscular mycorrhizal fungus Glomus intraradices. Phytochemistry 65:1925–1930
  • Ponce MA, Bompadre MJ, Scervino JM, Ocampo JA, Chaneton EJ, Godeas AM (2009) Flavonoids, benzoic acids and cinnamic acids isolated from shoots and roots of Italian rye Grass (Lolium multiflorum Lam.) with and without endophyte association and arbuscular mycorrhizal fungus. Biochem Syst Ecol 37:245–253
  • Ramos DF, Leitão GG, Costa FN, Abreu L, Villarreal JV, Leitão SG, Fernández SLS, Silva PEA (2008) Investigation of the antimycobacterial activity of 36 plant extracts from the brazilian Atlantic Forest. Rev Bras Ciênc Farm 44:669–674
  • Rasouli-Sadaghiani M, Hassani A, Barin M, Danesh YR, Sefidkon F (2010) Effects of arbuscular mycorrhizal (AM) fungi on growth, essential oil production and nutrients uptake in basil. J Med Plants Res 4:2222–2228
  • Ratti N, Verma HN, Gautam SP (2010) Effect of Glomus species on physiology and biochemistry of Catharantus roseus. Indian J Microbiol 50:355–360
  • Rojas-Andrade R, Cerda-García-Rojas CM, Frías-Hernández JT, Dendooven L, Olalde-Portugal V, Ramos-Valdivia AC (2003) Changes in the concentration of trigonelline in a semi-arid leguminous plant (Prosopis laevigata) induced by an arbuscular mycorrhizal fungus during the presymbiotic phase. Mycorrhiza 13:49–52
  • Santana AS, Cavalcanti UMT, Sampaio EVSB, Maia LC (2014) Production, storage and costs of inoculum of arbuscular mycorrhizal fungi (AMF). Braz J Bot 37:159–165
  • Santos RI (2007) Metabolismo básico e origem dos metabó litos secundários. In: Simões CMO, Schenkel EP, Gosmann G, Mell JCP, Mentz LA, Petrovick PR (eds) Farmacognosia: da planta ao medicamento. UFGS, Porto Alegre, pp 403–434
  • Santos SC, Mello JCP (2007) Taninos. In: Simões CMO, Schenkel EP, Gosmann G, Mell JCP, Mentz LA, Petrovick PR (eds) Farmacognosia: da planta ao medicamento. UFGS, Porto Alegre, pp 615–656
  • Schübler A, Schwarzott D, Walker C (2001) A new fungal phylum, the Glomeromycota: phylogeny and evolution. Mycol Res 105:1413–1421
  • Silva FSB (2006) Fase assimbió tica, produção, infectividade e efetividade de fungos micorrízicos em substratos com adubos orgânicos. PhD Thesis, Universidade Federal de Pernambuco
  • Silva MA, Cavalcante UMT, Silva FSB, Soares SAG, Maia LC (2004) Crescimento de mudas de maracujazeiro-doce (Passiflora alata Curtis) associadas a fungos micorrízicos arbusculares (Glomeromycota). Acta Bot Bras 18:981–985
  • Silva MF, Pescador R, Rebelo RA, Stürmer SL (2008) The effect of arbuscular mycorrhizal fungal isolates on the development and oleoresin production of micropropagated Zingiber officinale. Braz J Plant Physiol 20:119–130
  • Silva FA, Silva FSB, Maia LC (2014) Biotechnical application of arbuscular mycorrhizal fungi in the production of foliar biomolecules in ironwood seedlings [Libidibia ferrea (Mart. Ex Tul.) L.P.Queiroz var. ferrea]. J Med Plant Res 8:814–819
  • Singh R, Divya S, Awasthi A, Kalra A (2012) Technology for efficient and successful delivery of vermicompost colonized bioinoculants in Pogostemon cablin (patchouli) Benth. World J Microbiol Biotechnol 28:323–333
  • Souza PVD (2000) Interação entre micorrizas arbusculares e ácido giberélico no desenvolvimento vegetativo de plantas de citrange carrizo. Cienc Rural 30:783–787
  • Steinkellner S, Lendzemo V, Langer I, Schweiger P, Khaosaad T, Toussaint J-P, Vierheilig H (2007) Flavonoids and strigolactones in root exudates as signals in symbiotic and pathogenic plantfungus interactions. Molecules 12:1290–1306
  • Stopper H, Schimitt E, Kobras K (2005) Genotoxicity of phytoestrogens. Mutat Res 574:139–155
  • Strack D, Fester T (2006) Isoprenoid metabolism and plastid reorganization in arbuscular mycorrhizal roots. New Phytol 172:22–34
  • Taiz L, Zeiger E (2004) Plant physiology, 3rd edn. Sinauer Associates Publishers, Sunderland
  • Toussaint J-P (2007) Investigating physiological changes in the aerial parts of AM plants: what do we where should we be heading? Mycorrhiza 17:349–353
  • Toussaint J-P (2008) The effect of the arbuscular mycorrhizal symbiosis on the production of phytochemicals in basil. PhD Thesis, University of Adelaide
  • Toussaint J-P, Smith FA, Smith SE (2007) Arbuscular mycorrhizal fungi can induce the production of phytochemicals in sweet basil irrespective of phosphorus nutrition. Mycorrhiza 17:291–297
  • Toussaint J-P, Kraml M, Nell SE, Smith FA, Steinkellner S, Schmiderer C, Vierheilig H, Novak J (2008) Effect of Glomus mosseae on concentration of rosmarinic and caffeic acids and essential oil compounds in basil inoculated with Fusarium oxysporum f. sp. Basilica. Plant Pathology 57:1109–1116
  • Tristão FSM, Andrade SAL, Silveira APD (2006) Fungos micorrízicos arbusculares na formação de mudas de Cafeeiro, em substratos orgânicos comerciais. Bragantia 65:649–658
  • Venkateswarlu B, Pirat M, Kishore N, Rasul A (2008) Mycorrhizal inoculation in neem (Azadirachta indica) enhances azadirachtin content in seed kernels. World J Microbiol Biotechnol 24:1243–1247
  • Vermerris W, Nicholson R (2006) Phenolic compound biochemistry. Springer, Dordrecht
  • Vierheilig H, Gagnon H, Strack D, Maier W (2000) Accumulation of cyclohexenone derivatives in barley, wheat and maize roots in response to inoculation with different arbuscular mycorrhizal fungi. Mycorrhiza 9:291–293
  • Walter MH, Fester T, Strack D (2000) Arbuscular mycorrhizal fungi induce the non-mevalonate methylerythritol phosphate pathway of isoprenoid biosynthesis correlated with accumulation of the ‘yellow pigment’ and other apocarotenoids. Plant J 21:571–578
  • Zhu HH, Yao Q (2004) Localized and systemic increase of phenols in tomato roots induced by Glomus versiforme inhibits Ralstonia solanacearum. J Phytopathol 152:537–542
  • Zubek S, Stojakowska A, Anielska T, Turnau K (2010) Arbuscular mycorrhizal fungi alter thymol derivative contents of Inula ensifolia L. Mycorrhiza 20:497–504
  • Zubek S, Mielcarek S, Turnau K (2012) Hypericin and pseudohypericin concentrations of a valuable medicinal plant Hypericum perforatum L. are enhanced by arbuscular mycorrhizal fungi. Mycorrhiza 22:149–156

Typ dokumentu

Bibliografia

Identyfikatory

Identyfikator YADDA

bwmeta1.element.agro-49c54ce6-e2d9-4608-8914-873712af257c
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.