This review surveys the results of recent studies and concludes that inoculation with arbuscular mycorrhizal fungi can increase the production of plant secondary metabolites that have medicinal or nutritional potential.
Laboratorio de Enzimologia e Fitoquímica Aplicada a Micologia (LEFAM), Universidade de Pernambuco, Campus Petrolina, Petrolina, PF 56328-900, Brazil
Programa de Pos-Graduacao Em Biologia Celular E Molecular Aplicada, Instituto De Ciencias Biologicas, ICB/Universidade de Pernambuco, Recife, PE 50100-130, Brazil
Centro de Ciencias Biologicas, Departamento de Micologia, Universidade Federal de Pernambuco, Recife, PE 50740-465, Brazil
Bibliografia
Abu-Zeyad R, Khan AG, Khoo C (1999) Occurrence of arbuscular mycorrhiza in Castanospermum australe A. Cunn. & C. Fraser and effects on growth and production of castanospermine. Mycorrhiza 9:111–117
Agra MF, Freitas PF, Barbosa-Filho JM (2007) Synopsis of the plants known as medicinal and poisonous in Northeast of Brazil. Braz J Pharmacogn 17:114–140
Akiyama K, Hayashi H (2002) Arbuscular mycorrhizal funguspromoted accumulation of two new triterpenoids in Cucumber roots. Biosci Biotechnol Biochem 66:762–769
Andrade SAL, Malik S, Sawaya ACHF, Bottcher A, Mazzafera P (2013) Association with arbuscular mycorrhizal fungi influences alkaloid synthesis and accumulation in Catharanthus roseus and Nicotiana tabacum plants. Acta Physiol Plant 35:867–880
Anjos ECT, Cavalcante UMT, Santos VF, Maia LC (2005) Produção de mudas de maracujazeiro-doce micorrizadas em solo desinfestado e adubado com fósforo. Pesq Agropec Bras 40:345–351
Araim G, Saleem A, Arnason JT, Charest C (2009) Root colonization by an arbuscular mycorrhizal (AM) fungus increases growth and secondary metabolism of purple coneflower, Echinacea purpurea (L.) Moench. J Agric Food Chem 57:2255–2258
Baslam M, Garmendia I, Goicoechea N (2011) Arbuscular mycorrhizal fungi (AMF) improved growth and nutritional quality of greenhouse-grown lettuce. J Agric Food Chem 59:5504–5515
Baslam M, Esteban R, García-Plazaola JI, Goecoechea N (2013a) Effectiveness of arbuscular mycorrhizal fungi (AMF) for inducing the accumulation of major carotenoids, chlorophylls and tocopherol in green and red leaf lettuces. Appl Microbiol Biotechnol 97:3119–3128
Baslam M, Garmendia I, Goicoechea N (2013b) The arbuscular mycorrhizal symbiosis can overcome reductions in yeld and nutritional quality in greenhouse-lettuces cultivated at inappropriate growing seasons. Sci Hortic 164:145–154
Berbara RLL, Souza FA, Fonseca HMAC (2006) Fungos micorrízicos arbusculares: muito além da nutrição. In: Fernandes MS (ed) Nutrição Mineral de Plantas. Sociedade Brasileira de Ciência do Solo, Viçosa, pp 53–78
Bharti N, Baghel S, Barnawal D, Yadav A, Kaira A (2013) The greater effectiveness of Glomus mosseae and Glomus intraradices in improving productivity, oil content and tolerance of saltstressed menthol mint (Mentha arvensis). J Sci Food Agric 93:2154–2161
Caldwell CR, Britz SJ (2006) Effect of supplemental ultraviolet radiation on the carotenoid and chlorophyll composition of green house-grown leaf lettuce (Lactuca sativa L.) cultivars. J Food Compos Anal 19:637–644
Carvalho JCT, Gosmann G, Schenkel EP (2007) Compostos fenólicos simples e heterosídicos. In: Simões CMO, Schenkel EP, Gosmann G, Mell JCP, Mentz LA, Petrovick PR (eds) Farmacognosia: da planta ao medicamento. UFGS, Porto Alegre, pp 519–535
Castellanos-Morales V, Villegas J, Wendelin S, Vierheilig H, Eder R, Cárdenas-Navarro R (2010) Root colonization by the arbuscular mycorrhizal fungus Glomus intraradices alters the quality of strawberry fruits (Fragaria x ananassa Duch.) at different nitrogen levels. J Sci Food Agric 90:1774–1782
Cavalcante UMT, Maia LC, Nogueira RJMC, Santos VF (2001) Respostas fisiológicas em mudas de maracujazeiro amarelo (Passiflora edulis Sims. F. flavicarpa Deg.) inoculadas com fungos micorrízicos arbusculares e submetidas a estresse hídrico. Acta Bot Bras 15:379–390
Cavalcante UMT, Maia LC, Melo AMY, Santos VF (2002) Influência da densidade de fungos micorrízicos arbusculares na produção de mudas de maracujazeiro-amarelo. Pesq Agropec Bras 37:643–649
Cavaleiro C (2007) Plantas aromáticas e óleos essenciais em farmácia e medicina. In: Figueiredo AC, Barroso JG, Pedro LG (eds) Potencialidades e aplicações das plantas aromáticas e medicinais. Edição da Faculdade de Ciências da Universidade de Lisboa, Centro de Biotecnologia Vegetal, Lisboa, Curso teóricoprático, pp 55–62
Ceccarelli N, Curadi M, Martelloni L, Sbrana C, Picciarelli P, Giovannetti M (2010) Mycorrhizal colonization impacts on phenolic content and antioxidant properties of artichoke leaves and flower heads two years after field transplant. Plant Soil 335:311–323
Chaudhary V, Kapoor R, Bhatnagar AK (2008) Effectiveness of two arbuscular mycorrhizal fungi on concentrations of essential oil and artemisinin in three accessions of Artemisia annua L. Appl Soil Ecol 40:174–181
Chen S, Jin W, Liu A, Zhang S, Liu D, Wang F, Lin X, He C (2013) Arbuscular mycorrhizal fungi (AMF) increase growth and secondary metabolism in cucumber subjected to low temperature stress. Sci Hortic 160:222–229
Chu EY, Moller MRF, Carvalho JG (2001) Efeitos da inoculação micorrízica em mudas de gravioleira em solo fumigado e não fumigado. Pesq Agropec Bras 36:671–680
Copetta A, Lingua G, Berta G (2006) Effects of three AM fungi on growth, distribution of glandular hairs, and essential oil production in Ocimum basilicum L. var. Genovese. Mycorrhiza 16:485–494
Copetta A, Lingua G, Bardi L, Masoero G, Berta G (2007) Influence of arbuscular mycorrhizal fungi on growth and essential oil composition in Ocimum basilicum var. Genovese. Caryologia 60:106–110
Cosme M, Franken P, Mewis I, Baldermann S, Wurst S (2014) Arbuscular mycorrhizal fungi affect glucosinolate and mineral element composition in leaves of Moringa oleifera. Mycorrhiza 24:565–570
Dave S, Tarafdar JC (2011) Stimulatory synthesis of saponin by mycorrhizal fungi in safed musli (Chlorophytum borivilianum) tubers. Int Res J Agric Sci Soil Sci 1:137–141
Eftekhari M, Alizadeh M, Ebrahimi P (2012) Evaluation of the total phenolics and quercetin content of foliage in mycorrhizal grape (Vitis vinifera L.) varieties and effect of postharvest drying on quercetin yield. Ind Crop Prod 38:160–165
Fester T, Maier W, Strack D (1999) Accumulation of secondary compounds in barley and wheat roots in response to inoculation with an arbuscular mycorrhizal fungus and co-inoculation with rhizosphere bacteria. Mycorrhiza 8:241–246
Freitas MSM, Martins MA, Vieira IJC (2004a) Produção de óleos essenciais de Mentha arvensis em resposta á inoculação de fungos micorrízicos arbusculares. Pesq Agropec Bras 39:887–894
Freitas MSM, Martins MA, Carvalho AJC, Carneiro RFV (2004b) Crescimento e produção de fenóis totais em carqueja [Baccharis trimera (Less.) DC.] em resposta á inoculação com fungos micorrízicos arbusculares, na presença e na ausência de adubação mineral. Rev Bras Plantas Med 6:30–34
Geneva MP, Stancheva IV, Boychinova MN, Mincheva NH, Yonova PA (2010) Effects of foliar fertilization and arbuscular mycorrhizal colonization on Salvia officinalis L. growth, antioxidant capacity, and essential oil composition. J Sci Food Agric 90:696–702
Ghasemzadeh A, Jaafar HZE, Rahmat A (2010) Elevated carbon dioxide increases contents of flavonoids and phenolics compound, and antioxidant activities in Malaysian Young Ginger (Zingiber officinale Roscoe) varieties. Molecules 15:7907–7922
Giovannetti M, Avio L, Barale R, Ceccarelli N, Cristofani R, Iezzi A, Mignolli F, Picciarelli P, Pinto B, Reali D, Sbrana C, Scarpato R (2012) Nutraceutical value and safety of tomato fruits produced by mycorrhizal plants. Brit J Nutr 107:242–251
Gobbo-Neto L, Lopes N (2007) Plantas medicinais: fatores de influência no conteúdo de metabólitos secundários. Quím Nova 30:374–381
Gogoi P, Singh RK (2011) Differential effect of some arbuscular mycorrhizal fungi on growth of Piper longum L. (Piperaceae). Indian J Sci Technol 4:119–125
Gupta ML, Prasad A, Ram M, Kumar S (2002) Effect of the vesicular-arbuscular mycorrhizal (VAM) fungus Glomus fasciculatum on the essential oil yield related characters and nutrient acquisition in the crops of different cultivars of menthol mint (Mentha arvensis) under field conditions. Biores Technol 81:77–79
Heidari M, Karami V (2014) Effects of different mycorrhiza species on grain yield, nutrient uptake and oil content of sunflower under water stress. J Saudi Soc Agric Sci 13:9–13
Heldt HW (2005) Plant biochemistry, 3rd edn. Elsevier Academic Press, London
Ibrahim MH, Jaafar HZE (2011) Involvement of carbohydrate, protein and phenylalanine ammonia lyase in up-regulation of secondary metabolites in Labisia pumila under various CO2 and N2 levels. Molecules 16:4172–4190
Janos DP (2007) Plant responsiveness to mycorrhizas differs from dependence upon mycorrhizas. Mycorrhiza 17:75–91
Kapoor R, Giri B, Mukerji KG (2002a) Glomus macrocarpum: a potential bioinoculant to improve essential oil quality and concentration in Dill (Anethum graveolens L.) and Carum (Trachyspermum ammi (Linn.) Sprague). World J Microbiol Biotechnol 18:459–463
Kapoor R, Giri B, Mukerji KG (2002b) Mycorrhization of coriander (Coriandrum sativum L.) to enhance the concentration and quality of essential oil. J Sci Food Agric 82:339–342
Kapoor R, Giri B, Mukerji KG (2004) Improved growth and essential oil yield and quality in Foeniculum vulgare mill on mycorrhizal inoculation supplemented with P-fertilizer. Biores Technol 93:307–311
Kapoor R, Chaudhary V, Bhatnagar AK (2007) Effects of arbuscular mycorrhiza and phosphorus application on artemisinin concentration in Artemisia annua L. Mycorrhiza 17:581–587
Karagiannidis T, Thomidis T, Lazari D, Panou-Filotheou E, Karagiannidou C (2011) Effect of three Greek arbuscular mycorrhizal fungi in improving the growth, nutrient concentration, and production of essential oils of orégano and mint plants. Sci Hort 129:329–334
Kaschuk G, Kuyper TW, Leffelaar PA, Hungria M, Giller KE (2009) Are the rates of photosynthesis stimulated by the carbon sink strength of rhizobial and arbuscular mycorrhizal symbioses? Soil Biol Biochem 41:1233–1244
Khalafallah AA, Abo-Ghalia HH (2008) Effect of arbuscular mycorrhizal fungi on the metabolic products and activity of antioxidant system in wheat plants subjected to short-term water stress, followed by recovery at different growth stages. J Appl Sci Res 4:559–569
Khaosaad T, Vierheilig H, Nell M, Zitterl-Eglseer K, Novak J (2006) Arbuscular mycorrhiza alter the concentration of essential oils in oregano (Origanum sp., Lamiaceae). Mycorrhiza 16:443–446
Khaosaad T, Krenn L, Medjakovic S, Ranner A, Lössl A, Nell M, Jungbauer A, Vierheilig H (2008) Effect of mycorrhization on the isoflavone content and the phytoestrogen activity of red clover. J Plant Physiol 165:1161–1167
Larose G, Chênevert R, Moutoglis P, Gagné S, Piché Y, Vierheilig H (2002) Flavonoid levels in roots of Medicago sativa are modulated by the developmental stage of the symbiosis and the root colonizing arbuscular mycorrhizal fungus. J Plant Physiol 159:1329–1339
Latef AAHA, Chaoxing H (2011) Effect of arbuscular mycorrhizal fungi on growth, mineral nutrition, antioxidant enzymes activity and fruit yield of tomato grown under salinity stress. Sci Hortic 127:228–233
Li Q, Kubota C (2009) Effects of supplemental light quality on growth and phytochemicals of baby leaf lettuce. Environ Exp Bot 67:59–64
Lingua G, Bona E, Manassero P, Marsano F, Todeschini V, Cantamessa S, Copetta A, Agostino G, Gamalero E, Berta G (2013) Arbuscular mycorrhizal fungi and plant growth-promoting pseudomonads increases anthocyanin concentration in strawberry fruits (Fragaria x ananassa var. Selva) in conditions of reduced fertilization. Int J Mol Sci 14:16207–16225
Lister CE, Lancaster JE, Walker JRL (1996) Developmental changes in enzymes of flavonoid biosynthesis in the skins of red and green apple cultivars. J Sci Food Agric 71:313–320
Lizarazo K, Fernández-Marín B, Becerril JM, García-Plazaola JI (2010) Ageing and irradiance enhance vitamin E content in green edible tissues from crop plants. J Sci Food Agric 90:1994–1999
Lohse S, Schliemann W, Ammer C, Kopka J, Strack D, Fester T (2005) Organization and metabolism of plastids and mitochondria in arbuscular mycorrhizal roots of Medicago truncatula. Plant Physiol 139:329–340
Maier W, Peipp H, Schimidt J, Wray V, Strack D (1995) Levels of terpenoid glycoside (blumenin) and cell wall-bound phenolics in some cereal mycorrhizas. Plant Physiol 109:465–470
Maier W, Hammer K, Dammann U, Schulz B, Strack D (1997) Accumulation of sesquiterpenoid cyclohexanone derivatives induced by an arbuscular mycorrhizal fungus in members of the Poaceae***. Planta 202:36–42
Mandal S, Evelin H, Giri B, Singh VP (2013) Arbuscular mycorrhiza enhances the production of stevioside and rebaudioside-A in Stevia rebaudiana via nutritional and non-nutritional mechanisms. Appl Soil Ecol 72:187–194
Manoharan PT, Shanmugaiah V, Balasubramanian N, Gomathinayagam S, Sharma MP, Muthuchelian K (2010) Influence of AM fungi on the growth and physiological status of Erythrina variegata Linn. grown under different water stress conditions. Eur J Soil Biol 46:151–156
Martens S, Mithöfer A (2005) Flavones and flavone synthases. Phytochemistry 66:2399–2407
Matsubara Y, Ishigaki T, Koshikawa K (2009) Changes in free amino acid concentrations in mycorrhizal strawberry plants. Sci Hortic 119:392–396
Morandi D, Bailey JA (1984) Isoflavonoid accumulation in soybean roots infected with vesicular-arbuscular mycorrhizal fungi. Phys Plant Path 24:357–364
Nagahashi G, Douds DD, Ferhatoglu Y (2010) Functional categories of root exudates compounds and their relevance to AM fungal growth. In: Koltai H, Kapulnik Y (eds) Arbuscular mycorrhizas: physiology and function. Springer, Dordrecht, pp 33–56
Nell M, Vötsch M, Vierheilig H, Steinkellner S, Zitterl-Eglseer K, Franz C, Novak J (2009) Effect of phosphorus uptake on growth and secondary metabolites of garden sage (Salvia officinalis L.). J Sci Food Agric 89:1090–1096
Nell M, Wawrosch C, Steinkellner S, Vierheilig H, Kopp B, Lössl A, Franz C, Novak J, Zitterl-Eglseer K (2010) Root colonization by symbiotic arbuscular mycorrhizal fungi increases sesquiterpenic acid concentration in Valeriana officinalis L. Planta Med 76:393–398
Oliveira MS, Campos MAS, Albuquerque UP, Silva FBS (2014) Arbuscular mycorrhizal fungi and vermicompost to maximize the production of foliar biomolecules in Passiflora alata Curtis seedlings. J Sci Food Agric. doi:10.1002/jsfa.6767
Pedone-Bonfim MVL, Lins MA, Coelho IR, Santana AS, Silva FSB, Maia LC (2013) Mycorrhizal technology and phosphorus in the production of primary and secondary metabolites in cebil (Anadenanthera colubrina (Vell.) Brenan) seedlings. J Sci Food Agric 93:1479–1484
Peipp H, Maier W, Schmidt J, Wray V, Strack D (1997) Arbuscular mycorrhizal fungus-induced changes in the accumulation of secondary compounds in barley roots. Phytochemistry 44:581–587
Perner H, Rohn S, Driemel G, Batt N, Schwarz D, Kroh LW, George E (2008) Effect of nitrogen species supply and mycorrhizal colonization on organosulfur and phenolic compounds in onions. J Agric Food Chem 56:3538–3545
Ponce MA, Scervino JM, Erra-Balsells R, Ocampo JA, Godeas AM (2004) Flavonoids from shoots and roots of Trifolium repens (white clover) grown in presence or absence of the arbuscular mycorrhizal fungus Glomus intraradices. Phytochemistry 65:1925–1930
Ponce MA, Bompadre MJ, Scervino JM, Ocampo JA, Chaneton EJ, Godeas AM (2009) Flavonoids, benzoic acids and cinnamic acids isolated from shoots and roots of Italian rye Grass (Lolium multiflorum Lam.) with and without endophyte association and arbuscular mycorrhizal fungus. Biochem Syst Ecol 37:245–253
Ramos DF, Leitão GG, Costa FN, Abreu L, Villarreal JV, Leitão SG, Fernández SLS, Silva PEA (2008) Investigation of the antimycobacterial activity of 36 plant extracts from the brazilian Atlantic Forest. Rev Bras Ciênc Farm 44:669–674
Rasouli-Sadaghiani M, Hassani A, Barin M, Danesh YR, Sefidkon F (2010) Effects of arbuscular mycorrhizal (AM) fungi on growth, essential oil production and nutrients uptake in basil. J Med Plants Res 4:2222–2228
Ratti N, Verma HN, Gautam SP (2010) Effect of Glomus species on physiology and biochemistry of Catharantus roseus. Indian J Microbiol 50:355–360
Rojas-Andrade R, Cerda-García-Rojas CM, Frías-Hernández JT, Dendooven L, Olalde-Portugal V, Ramos-Valdivia AC (2003) Changes in the concentration of trigonelline in a semi-arid leguminous plant (Prosopis laevigata) induced by an arbuscular mycorrhizal fungus during the presymbiotic phase. Mycorrhiza 13:49–52
Santana AS, Cavalcanti UMT, Sampaio EVSB, Maia LC (2014) Production, storage and costs of inoculum of arbuscular mycorrhizal fungi (AMF). Braz J Bot 37:159–165
Santos RI (2007) Metabolismo básico e origem dos metabó litos secundários. In: Simões CMO, Schenkel EP, Gosmann G, Mell JCP, Mentz LA, Petrovick PR (eds) Farmacognosia: da planta ao medicamento. UFGS, Porto Alegre, pp 403–434
Santos SC, Mello JCP (2007) Taninos. In: Simões CMO, Schenkel EP, Gosmann G, Mell JCP, Mentz LA, Petrovick PR (eds) Farmacognosia: da planta ao medicamento. UFGS, Porto Alegre, pp 615–656
Schübler A, Schwarzott D, Walker C (2001) A new fungal phylum, the Glomeromycota: phylogeny and evolution. Mycol Res 105:1413–1421
Silva FSB (2006) Fase assimbió tica, produção, infectividade e efetividade de fungos micorrízicos em substratos com adubos orgânicos. PhD Thesis, Universidade Federal de Pernambuco
Silva MA, Cavalcante UMT, Silva FSB, Soares SAG, Maia LC (2004) Crescimento de mudas de maracujazeiro-doce (Passiflora alata Curtis) associadas a fungos micorrízicos arbusculares (Glomeromycota). Acta Bot Bras 18:981–985
Silva MF, Pescador R, Rebelo RA, Stürmer SL (2008) The effect of arbuscular mycorrhizal fungal isolates on the development and oleoresin production of micropropagated Zingiber officinale. Braz J Plant Physiol 20:119–130
Silva FA, Silva FSB, Maia LC (2014) Biotechnical application of arbuscular mycorrhizal fungi in the production of foliar biomolecules in ironwood seedlings [Libidibia ferrea (Mart. Ex Tul.) L.P.Queiroz var. ferrea]. J Med Plant Res 8:814–819
Singh R, Divya S, Awasthi A, Kalra A (2012) Technology for efficient and successful delivery of vermicompost colonized bioinoculants in Pogostemon cablin (patchouli) Benth. World J Microbiol Biotechnol 28:323–333
Souza PVD (2000) Interação entre micorrizas arbusculares e ácido giberélico no desenvolvimento vegetativo de plantas de citrange carrizo. Cienc Rural 30:783–787
Steinkellner S, Lendzemo V, Langer I, Schweiger P, Khaosaad T, Toussaint J-P, Vierheilig H (2007) Flavonoids and strigolactones in root exudates as signals in symbiotic and pathogenic plantfungus interactions. Molecules 12:1290–1306
Stopper H, Schimitt E, Kobras K (2005) Genotoxicity of phytoestrogens. Mutat Res 574:139–155
Strack D, Fester T (2006) Isoprenoid metabolism and plastid reorganization in arbuscular mycorrhizal roots. New Phytol 172:22–34
Toussaint J-P (2007) Investigating physiological changes in the aerial parts of AM plants: what do we where should we be heading? Mycorrhiza 17:349–353
Toussaint J-P (2008) The effect of the arbuscular mycorrhizal symbiosis on the production of phytochemicals in basil. PhD Thesis, University of Adelaide
Toussaint J-P, Smith FA, Smith SE (2007) Arbuscular mycorrhizal fungi can induce the production of phytochemicals in sweet basil irrespective of phosphorus nutrition. Mycorrhiza 17:291–297
Toussaint J-P, Kraml M, Nell SE, Smith FA, Steinkellner S, Schmiderer C, Vierheilig H, Novak J (2008) Effect of Glomus mosseae on concentration of rosmarinic and caffeic acids and essential oil compounds in basil inoculated with Fusarium oxysporum f. sp. Basilica. Plant Pathology 57:1109–1116
Tristão FSM, Andrade SAL, Silveira APD (2006) Fungos micorrízicos arbusculares na formação de mudas de Cafeeiro, em substratos orgânicos comerciais. Bragantia 65:649–658
Venkateswarlu B, Pirat M, Kishore N, Rasul A (2008) Mycorrhizal inoculation in neem (Azadirachta indica) enhances azadirachtin content in seed kernels. World J Microbiol Biotechnol 24:1243–1247
Vermerris W, Nicholson R (2006) Phenolic compound biochemistry. Springer, Dordrecht
Vierheilig H, Gagnon H, Strack D, Maier W (2000) Accumulation of cyclohexenone derivatives in barley, wheat and maize roots in response to inoculation with different arbuscular mycorrhizal fungi. Mycorrhiza 9:291–293
Walter MH, Fester T, Strack D (2000) Arbuscular mycorrhizal fungi induce the non-mevalonate methylerythritol phosphate pathway of isoprenoid biosynthesis correlated with accumulation of the ‘yellow pigment’ and other apocarotenoids. Plant J 21:571–578
Zhu HH, Yao Q (2004) Localized and systemic increase of phenols in tomato roots induced by Glomus versiforme inhibits Ralstonia solanacearum. J Phytopathol 152:537–542
Zubek S, Stojakowska A, Anielska T, Turnau K (2010) Arbuscular mycorrhizal fungi alter thymol derivative contents of Inula ensifolia L. Mycorrhiza 20:497–504
Zubek S, Mielcarek S, Turnau K (2012) Hypericin and pseudohypericin concentrations of a valuable medicinal plant Hypericum perforatum L. are enhanced by arbuscular mycorrhizal fungi. Mycorrhiza 22:149–156