PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
2012 | 21 | 2 |
Tytuł artykułu

Effects of hydrothermal depolymerization and enzymatic hydrolysis of algae biomass on yield of methane fermentation process

Warianty tytułu
Języki publikacji
EN
Abstrakty
EN
Our study was undertaken in order to determine the effects of preliminary hydrothermal depolymerization and enzymatic hydrolysis of macroalgae biomass originating from the Vistula Lagoon on yield of the methane fermentation process in terms of quantity and quality of produced biogas. The process of enzymatic hydrolysis was conducted with a mixture of enzymes: Cellulast 1.5 L, Novozym 188, and Hemicellulase. In turn, the process of hydrothermal depolymerization was run for 120 minutes at 200ºC under a pressure of 1.7 MPa. The processed plant substrate was next subjected to mesophilic fermentation. The application of enzymatic hydrolysis contributed to an increased quantity of and improved qualitative composition of biogas produced.
Słowa kluczowe
Wydawca
-
Rocznik
Tom
21
Numer
2
Opis fizyczny
p.363-368,fig.,ref.
Twórcy
autor
  • Department of Environmental Protection Engineering, University of Warmia and Mazury in Olsztyn, Prawocheńskiego 1, 10-957 Olsztyn, Poland
autor
  • Department of Environmental Protection Engineering, University of Warmia and Mazury in Olsztyn, Prawocheńskiego 1, 10-957 Olsztyn, Poland
autor
  • Department of Environmental Protection Engineering, University of Warmia and Mazury in Olsztyn, Prawocheńskiego 1, 10-957 Olsztyn, Poland
autor
  • Department of Environmental Protection Engineering, University of Warmia and Mazury in Olsztyn, Prawocheńskiego 1, 10-957 Olsztyn, Poland
Bibliografia
  • 1. GUNASEELAN V.N. Anaerobic digestion of biomass for methane production: A review. Biomass and Bioenergy 13, (1-2), 83, 1997.
  • 2. MUSSGNUG J.H., KLASSEN V., SCHLÜTER A., KRUSE O. Microalgae as substrates for fermentative biogas production in a combined biorefinery concept. Journal of Biotechnology 150, 51, 2010.
  • 3. SINGH J., GU S. Commercialization potential of microalgae for biofuels production. Renewable and Sustainable Energy Reviews 14, 2596, 2010.
  • 4. MAIRET F., BERNARD O., RAS M., LARDON L., STEYER J.P. Modeling anaerobic digestion of microalgae using ADM1. Bioresource Technology 102, 6823, 2011.
  • 5. GOLUEKE C. G., OSWALD J., GOTAAS H. B. Anaerobic Digestion of Algae. Appl Microbiol. 5, (1), 47, 1957.
  • 6. ZAMALLOA C., VULSTEKE E., ALBRECHT J., VERSTRAETE W. The techno-economic potential of renewable energy through the anaerobic digestion of microalgae The techno-economic potential of renewable energy through the anaerobic digestion of microalgae. Bioresource Technology 102, 1149, 2011.
  • 7. SIALVE B., BERNET N., BERNARD O. Anaerobic digestion of microalgae as a necessary step to make microalgal biodiesel sustainable, Biotechnology Advances 27, 409, 2009.
  • 8. RAS M., LARDON L., SIALVE B., BERNET N., STEYER J.P. Experimental study on a coupled process of production and anaerobic digestion of Chlorella vulgaris. Bioresource Technology 102, 200, 2011.
  • 9. CHANG V., HOLTZAPPLE M. Applied Biochemistry and Biotechnology 84-86, 5-37, 2000.
  • 10. HONG-WEI YEN, BRUNE D.E. Anaerobic co-digestion of algal sludge and waste paper to produce methane. Bioresource Technology 98, 130, 2007.
  • 11. LILI LIN, RONG YAN, YONGQIANG LIU, WENJU JIANG. In-depth investigation of enzymatic hydrolysis of biomass wastes based on three major components: Cellulose, hemicellulose and lignin. Bioresource Technology 101, 8217, 2010.
  • 12. WEILAND P. Production and Energetic Use of Biogas Applied Biochemistry and Biotechnology Vol. 109, from Energy Crops and Wastes in Germany, 2003.
  • 13. DINUCCIO E., BALSARI P., GIOELLI F., MENARDO S. Evaluation of the biogas productivity potential of some Italian agro-industrial biomasses. Bioresource Technology 101, 3780, 2010.
  • 14. BAUER A., LEONHARTSBERGER C., BOSCH P., AMON B., FRIEDL A., AMON T. Analysis of methane yields from energy crops and agricultural by-products and estimation of energy potential from sustainable crop rotation systems in EU-27 Clean Techn Environ Policy 12, 153, 2010.
  • 15. KRZEMIENIEWSKI M., DĘBOWSKI M., ZIELIŃSKI M. Algae as an alternative energy crops for land. Czysta Energia 9, 25, 2009.
  • 16. HONG-WEI YEN, BRUNE D.E. Anaerobic co-digestion of algal sludge and waste paper to produce methane. Bioresource Technology 98, 130, 2007.
Typ dokumentu
Bibliografia
Identyfikatory
Identyfikator YADDA
bwmeta1.element.agro-49971096-28aa-4501-830f-ecea0a32742a
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.