PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników

Czasopismo

2018 | 71 | 1 |

Tytuł artykułu

Seasonal changes in plant pollen concentrations over recent years in Vinnytsya, Central Ukraine

Treść / Zawartość

Warianty tytułu

PL
Sezonowe zmiany zawartości pyłku roślin w areoplanktonie Winnicy (Ukraina Centralna). Badania wieloletnie

Języki publikacji

EN

Abstrakty

EN
The control of plant pollen season patterns is especially important in the expectation of climate change, as the timing of potential varying pollen seasons affects the human population. An ever-increasing number of people suffer from hay fever symptoms with varying severity during the pollen season. This paper presents data on the seasonal variations of pollen concentration and the factors which are the likely causes of these variations in Vinnytsya, a city in Central Ukraine, in order to establish the apparent pattern of this variation and so improve the efficiency of hay fever control in Ukraine. Pollen counts were obtained by gravimetric and volumetric methods employing a Hirst-type volumetric spore trap. Alder (Alnus) and birch (Betula) peaks of pollen release occurred approximately 1 month earlier than was observed at the end of the twentieth century. This was due to the seasonal heat accumulation related to the appropriate temperature regimen registered in January and February prior to the growing season. Other trees – including poplar (Populus), maple (Acer), walnut (Juglans), common hazel (Corylus) – did not show distinct changes in pollen season pattern over the past decades. Mean daily temperature seems to be the leading factor promoting early season onset and a seasonal pollen peak shift of the grass and herb flora such as ragweed (Ambrosia). The shift of the ragweed seasonal pollen maximum towards later in the season correlated with higher temperatures during September. Our study has shown that droughts may also significantly decrease the ragweed pollen concentration.
PL
Monitoring sezonów pyłkowych jest szczególnie ważny w związku ze zmianami klimatu, ponieważ czas występowania tych sezonów ma wpływ na kondycję zdrowotną ludzi. W sezonie pylenia coraz większa część populacji na objawy kataru siennego o różnym nasileniu. W artykule przedstawiono dane na temat sezonowych zmian stężenia pyłku i czynników, które są prawdopo-dobnymi przyczynami tych zmian w Winnicy (Centralna Ukraina), w celu opracowania wzorca, który poprawiłby skuteczność kontroli występowania sezonów pyłkowych i zapadalności na katar sienny u osób wrażliwych.Monitoring pyłkowy był prowadzony metodą grawimetryczną i wolumetryczną (pułapka typu Hirst).Najwyższe stężenia pyłku olchy (Alnus) i brzozy (Betula) zaobserwowano około miesiąca wcześniej niż było to notowane pod koniec XX wieku. Wynikało to z sezonowej akumulacji ciepła związanej ze wzrostem temperatury powietrza rejestrowanym w styczniu i lutym przed sezonem wegetacyjnym. Inne drzewa – w tym topola (Populus), klon (Acer), orzech (Juglans), leszczyna (Corylus) – nie wykazały wyraźnych zmian w przebiegu sezonu pyłkowego w ciągu ostatnich dziesięcioleci.Średnia temperatura powietrza wydaje się być wiodącym czynnikiem promującym początek wczesnej pory roku i sezonowe przesunięcie intensywnego pylenia traw i roślin zielnych, takich jak ambrozja (Ambrosia). Opóźnienie okresu maksymalnego stężenia pyłku ambrozji korelowało z wyższymi temperaturami powietrza we wrześniu. Badania wykazały, że deficyt opadów może znacznie zmniejszyć stężenie pyłku ambrozji

Słowa kluczowe

Wydawca

-

Czasopismo

Rocznik

Tom

71

Numer

1

Opis fizyczny

Article: 1731 [13 p.], fig.,ref.

Twórcy

autor
  • Department of Pharmacy, National Pirogov Memorial Medical University, Pirogov 56, 21018 Vinnytsya, Ukrai
autor
  • Department of Pharmacy, National Pirogov Memorial Medical University, Pirogov 56, 21018 Vinnytsya, Ukrai
  • Scientific Research Centre, National Pirogov Memorial Medical University, Pirogov 56, 21018 Vinnytsya, Ukrai
autor
  • Department of Hygiene and Ecology, National Pirogov Memorial Medical University, Pirogov 56, 21018 Vinnytsya, Ukra
  • Department of Hygiene and Ecology, National Pirogov Memorial Medical University, Pirogov 56, 21018 Vinnytsya, Ukra
autor
  • Department of Hygiene and Ecology, National Pirogov Memorial Medical University, Pirogov 56, 21018 Vinnytsya, Ukra
autor
  • Department of Hygiene and Ecology, National Pirogov Memorial Medical University, Pirogov 56, 21018 Vinnytsya, Ukra
autor
  • Department of Human and Animal Physiology, Vasyl’ Stus Donetsk National University, 600-richchya 21, 21021 Vinnytsia, Uk

Bibliografia

  • Rodinkova V. Airborne pollen spectrum and hay fever type prevalence in Vinnytsya, central Ukraine. Acta Agrobot. 2015;68(4):383–389. https://doi.org/10.5586/aa.2015.037
  • D’Amato G, Baena-Cagnani C, Cecchi L, Annesi-Maesano I, Nunes C, Ansotegui I, et al. Climate change, air pollution and extreme events leading to increasing prevalence of allergic respiratory diseases. Multidiscip Respir Med. 2013;8(1):12. https://doi.org/10.1186/2049-6958-8-12
  • Sofiev M, Bergmann KC, editors. Allergenic pollen: a review of the production, release, distribution and health impacts: Dordrecht: Springer; 2013. https://doi.org/10.1007/978-94-007-4881-1
  • Прокудин [Prokudyn] ЮН [YuN], Вовк [Vovk] АГ [AH], Петрова [Petrova] ОА [OA], Ермоленко [Ermolenko] ЕД [ED], Верниченко [Vernychenko] ЮВ [YuV]. Злаки Украины [Zlaky Ukraynы]. Киев [Kyev]: Наукова Думка [Naukova Dumka]; 1977.
  • Krasniak, O. Distribution of some species of the tribe Bromeae Dumort. (Poaceae) in Ukraine. Ukrainian Botanical Journal. 2013;70(2):236–237.
  • Дука [Duka] К [K], Дитятковський [Dytyatkovs”kyj] В [V], Науменко [Naumenko] Н [N]. Сучасний стан спектра сенсибілізації в дітей, хворих на поліноз [Suchasnyj stan spektra sensybilizaciyi v ditej, xvoryx na polinoz]. Здоровье Ребенка [Zdorov”e Rebenka]. 2008;6(15):30–32.
  • Bonini M, Šikoparija B, Prentović M, Cislaghi G, Colombo P, Testoni C. et al. A follow-up study examining airborne Ambrosia pollen in the Milan area in 2014 in relation to the accidental introduction of the ragweed leaf beetle Ophraella communa. Aerobiologia. 2015;32(2):371–374. https://doi.org/10.1007/s10453-015-9406-2
  • Rodinkova V, Motruk I, Palamarchuk O. Ragweed areas and preventive measures in Ukraine. European Journal of Aerobiology and Environmental Medicine. 2014;10(2):62.
  • Prank M, Chapman D, Bullock J, Belmonte J, Berger U, Dahl A, et al. An operational model for forecasting ragweed pollen release and dispersion in Europe. Agric For Meteorol. 2013;182–183:43–53. https://doi.org/10.1016/j.agrformet.2013.08.003
  • Cecchi L, Malaspina TT, Albertini R, Zanca M, Ridolo E, Usberti I, et al. The contribution of long-distance transport to the presence of Ambrosia pollen in central northern Italy. Aerobiologia. 2007;23:145–151. https://doi.org/10.1007/s10453-007-9060-4
  • Sommer J, Smith M, Šikoparija B, Kasprzyk I, Myszkowska D, Grewling Ł, et al. Risk of exposure to airborne Ambrosia pollen from local and distant sources in Europe – an example from Denmark. Ann Agric Environ Med. 2015;22(4):625–631. https://doi.org/10.5604/12321966.1185764
  • Kasprzyk I, Myszkowska D, Grewling Ł, Stach A, Šikoparija B, Skjøth CA, et al. The occurrence of Ambrosia pollen in Rzeszów, Kraków and Poznań, Poland: investigation of trends and possible transport of Ambrosia pollen from Ukraine. Int J Biometeorol. 2011;55(4):633–644. https://doi.org/10.1007/s00484-010-0376-3
  • de Weger LA, Pashley CH, Šikoparija B, Skjøth CA, Kasprzyk I, Grewling Ł, et al. The long-distance transport of airborne Ambrosia pollen to the UK and the Netherlands from Central and south Europe. Int J Biometeorol. 2016;60(12):1829–1839. https://doi.org/10.1007/s00484-016-1170-7
  • Earth Science Communications Team. Global Climate Change. Vital Signs of the Planet [Internet]. Global Temperature. 2016 [cited 2016 Aug 8]. Available from: http://climate.nasa.gov/vital-signs/global-temperature
  • European Environment Agency [Internet]. Global and European temperature. 2016 [cited 2016 Aug 8]. Available from: http://www.eea.europa.eu/data-and-maps/indicators/global-and-european-temperature-/assessment/#global-and-european-temperature
  • Bär R, Rouholahnejad E, Rahman K, Abbaspour K, Lehmann A. Climate change and agricultural water resources: a vulnerability assessment of the Black Sea catchment. Environ Sci Policy. 2015;46:57–69. https://doi.org/10.1016/j.envsci.2014.04.008
  • Frei T, Gassner E. Climate change and its impact on birch pollen quantities and the start of the pollen season an example from Switzerland for the period 1969–2006. Int J Biometeorol. 2008;52(7):667–674. https://doi.org/10.1007/s00484-008-0159-2
  • Inouye D. Effects of climate change on phenology, frost damage, and floral abundance of montane wildflowers. Ecology. 2008;89(2):353–362. https://doi.org/10.1890/06-2128.1
  • Doran P, Zimmerman M. Examining the scientific consensus on climate change. Earth and Space Science News. 2009;90(3):22–23. https://doi.org/10.1029/2009EO030002
  • Barnes C, Alexis N, Bernstein J, Cohn J, Demain J, Horner, E et al. Climate change and our environment: the effect on respiratory and allergic disease. J Allergy Clin Immunol Pract. 2013;1(2):137–141. https://doi.org/10.1016/j.jaip.2012.07.002
  • Melillo J, Terese R, Yohe G, editors. Climate Change Impacts in the United States: The Third National Climate Assessment [Internet]. U.S. Global Change Research Program. 2014 [cited 2016 Aug 8]. Available from: http://nca2014.globalchange.gov/
  • Gehrig, R. Alnus ×spaethii pollen can cause allergies already at Christmas. Aerobiologia. 2015;31(2):239–247. https://doi.org/10.1007/s10453-014-9360-4
  • Tuell J, Isaacs R. Weather during bloom affects pollination and yield of highbush blueberry. J Econ Entomol. 2010;103(3):557–562. https://doi.org/10.1603/EC09387
  • Fletcher A. Trading futures: economism and gender in a changing climate. Int Soc Work. 2015;58(3):364–374. https://doi.org/10.1177/0020872814556825
  • Mercuri AM, Torri P, Fornaciari R, Florenzano A. Plant responses to climate change: the case study of Betulaceae and Poaceae pollen seasons (Northern Italy, Vignola, Emilia-Romagna). Plants. 2016;5(4):42–54. https://doi.org/10.3390/plants5040042
  • Ariano R, Canonica G, Passalacqua G. Possible role of climate changes in variations in pollen seasons and allergic sensitizations during 27 years. Ann Allergy Asthma Immunol. 2010;104(3):215–222. https://doi.org/10.1016/j.anai.2009.12.005
  • Cebrino J, Portero de la Cruz S, Barasona MJ, Alcázar P, Moreno C, Domínguez-Vilches E, et al. Airborne pollen in Córdoba City (Spain) and its implications for pollen allergy. Aerobiologia. 2016;33(2):281–291. https://doi.org/10.1007/s10453-016-9469-8
  • Vuzh TY, Mokin VB, Wójcik W, Imanbek B. Control and minimization of allergenic plants impact on bronchial asthma morbidity, based on spatial-temporal data model. In: Romaniuk RS, Wojcik W, editors. Proceedings SPIE 9816, Optical Fibers and Their Applications; 2015 Dec 17; Lublin and Nałęczów, Poland. Bellingham, WA: Society of Photo-Optical Instrumentation Engineers; 2015. p. 98161M. https://doi.org/10.1117/12.2229083
  • Эрдтман [Jerdtman] Г [G]. Морфология пыльцы и таксономия растений: введение в палинологию [Morfologija pyl’cy i taksonomija rastenij: vvedenie v palinologiju]. Том 1 [Tom 1]. Москва [Moskva]: Мир [Mir]; 1956.
  • Rapiejko P. Pollen monitoring in Poland by Allergie Research Center. Ann Agric Environ Med. 1996;3:79–82.
  • Gamal EG. Reference-slides of pollen grains and spores. Stockholm: Palynological Laboratory Swedish Museum of Natural History; 1998.
  • Куприянова [Kuprijanova] ЛА [LA], Алешина [Aleshina] ЛА [LA]. Пыльца и споры растений флоры Европейской части СССР [Pyl’ca i spory rastenij flory Evropejskoj chasti SSSR]. Том 1 [Tom 1]. Москва [Moskva]: Наука [Nauka]; 1972.
  • Куприянова [Kuprijanova] ЛА [LA], Алешина [Aleshina] ЛА [LA]. Пыльца и споры растений флоры Европейской части СССР [Pyl’ca i spory rastenij flory Evropejskoj chasti SSSR]. Том 2 [Tom 2]. Москва [Moskva]: Наука [Nauka]; 1978.
  • Hirst JM. An automatic volumetric spore trap. Ann Appl Biol. 1952;39(2):257–265. https://doi.org/10.1111/j.1744-7348.1952.tb00904.x
  • Mozo HG, editor. Minimum requirements to manage aerobiological monitoring stations included in a national network involved in the EAN. International Aerobiology Newsletter. 2011;72:1–2.
  • Jäger S, Nilsson S, Berggren B, Pessi AM, Helander M, Ramfjord H. Trends of some airborne tree pollen in the Nordic countries and Austria, 1980–1993. Grana. 1996;35(3):171–178. https://doi.org/10.1080/00173139609429078
  • Fitter A, Fitter R. Rapid changes in flowering time in British plants. Science. 2002;296(5573):1689–1691. https://doi.org/10.1126/science.1071617
  • van Vliet AJH, Overeem A, de Groot RS, Jacobs AFG, Spieksma FTM. The influence of temperature and climate change on the timing of pollen release in The Netherlands. Int J Climatol. 2002;22(14):1757–1767. https://doi.org/10.1002/joc.820
  • Cecchi L, D’Amato G, Ayres J, Galan C, Forastiere F, Forsberg B, et al. Projections of the effects of climate change on allergic asthma: the contribution of aerobiology. Allergy. 2010;65(9):1073–1081. https://doi.org/10.1111/j.1398-9995.2010.02423.x
  • Nowosad J. Spatiotemporal models for predicting high pollen concentration level of Corylus, Alnus, and Betula. Int J Biometeorol. 2016;60(6):843–855. https://doi.org/10.1007/s00484-015-1077-8
  • Ziska L, Knowlton K, Rogers C, Dalan D, Tierney N, Frenz D, et al. Recent warming by latitude associated with increased length of ragweed pollen season in central North America. Proc Natl Acad Sci USA. 2011;108(10):4248–4251. https://doi.org/10.1073/pnas.1014107108
  • Stjepanović B, Svečnjak Z, Hrga I, Večenaj A, Šćepanović M, Barić K. Seasonal variation of airborne ragweed (Ambrosia artemisiifolia L.) pollen in Zagreb, Croatia. Aerobiologia. 2015;31(4):525–535. https://doi.org/10.1007/s10453-015-9384-4
  • Grewling Ł, Jackowiak B, Nowak M, Uruska A, Smith M. Variations and trends of birch pollen seasons during 15 years (1996–2010) in relation to weather conditions in Poznań (western Poland). Grana. 2012;51(4):280–292. https://doi.org/10.1080/00173134.2012.700727
  • Nowosad J, Stach A, Kasprzyk I, Weryszko-Chmielewska E, Piotrowska-Weryszko K, Puc M, et al. Forecasting model of Corylus, Alnus and Betula pollen concentration levels using spatiotemporal correlation properties of pollen count. Aerobiologia. 2015;32(3):453–468. https://doi.org/10.1007/s10453-015-9418-y
  • Sofiev M, Siljamo P, Ranta H, Linkosalo T, Jaeger S, Rasmussen A, et al. A numerical model of birch pollen emission and dispersion in the atmosphere. Description of the emission module. Int J Biometeorol. 2013;57(1):45–58. https://doi.org/10.1007/s00484-012-0532-z
  • Rasmussen A. The effects of climate change on the birch pollen season in Denmark. Aerobiologia. 2002;18(3–4):253–265. https://doi.org/10.1023/A:1021321615254
  • García-Mozo H, Galán C, Jato V, Belmonte J, Díaz de la Guardia C, Fernández D, et al. Quercus pollen season dynamics in the Iberian Peninsula: response to meteorological parameters and possible consequences of climate change. Ann Agric Environ Med. 2006;13(2):209–224.
  • Galán C, García-Mozo H, Vázquez L, Ruiz L, Díaz de la Guardia C, Trigo M. Heat requirement for the onset of the Olea europaea L. pollen season in several sites in Andalusia and the effect of the expected future climate change. Int J Biometeorol. 2005;49(3):184–188. https://doi.org/10.1007/s00484-004-0223-5
  • Skjøth C, Bilińska D, Werner M, Malkiewicz M, Groom B, Kryza M, et al. Footprint areas of pollen from alder (Alnus) and birch (Betula) in the UK (Worcester) and Poland (Wrocław) during 2005–2014. Acta Agrobot. 2015;68(4):315–324. https://doi.org/10.5586/aa.2015.044
  • Rodriguez-Rajo F, Dopazo A, Jato V. Environmental factors affecting the start of pollen season and concentrations of airborne Alnus pollen in two localities of Galicia (NW Spain). Ann Agric Environ Med. 2004;11(1):35–44.
  • Rodriguez-Rajo J, Grewling Ł, Stach A, Smith M. Factors involved in the phenological mechanism of Alnus flowering in Central Europe. Ann Agric Environ Med. 2009;16(2):277–284.
  • García-Mozo H, Mestre A, Galán C. Phenological trends in southern Spain: a response to climate change. Agric For Meteorol. 2010;150(4):575–580. https://doi.org/10.1016/j.agrformet.2010.01.023
  • Piotrowska K, Kubik-Komar A. The effect of meteorological factors on airborne Betula pollen concentrations in Lublin (Poland). Aerobiologia. 2012;28(4):467–479. https://doi.org/10.1007/s10453-012-9249-z
  • Myszkowska D. Predicting tree pollen season start dates using thermal conditions. Aerobiologia. 2014;30(3):307–321. https://doi.org/10.1007/s10453-014-9329-3
  • Rodinkova V, Chirka O, Gelman E, Motruk I, Palamarchuk O. Ragweed pollen sensitivity among children of Central Ukraine. European Journal of Aerobiology and Environmental Medicine. 2014;10(2):78.
  • Fernández-Llamazares A, Belmonte J, Alarcón M, López-Pacheco M. Ambrosia L. in Catalonia (NE Spain): expansion and aerobiology of a new bioinvader. Aerobiologia. 2012;28(4):435–451. https://doi.org/10.1007/s10453-012-9247-1
  • Skjøth C, Petersen H, Sommer J, Smith M. Copenhagen: a harbinger for ragweed (Ambrosia) in Northern Europe under climate change? IOP Conf Ser Earth Environ Sci. 2009;6(14):142031. https://doi.org/10.1088/1755-1307/6/14/142031
  • Deen W, Hunt LA, Swanton CJ. Photothermal time describes common ragweed (Ambrosia artemisiifolia L.) phenological development and growth. Weed Sci. 1998;46(5):561–568.

Typ dokumentu

Bibliografia

Identyfikatory

Identyfikator YADDA

bwmeta1.element.agro-496f861e-2eb1-4116-bfeb-8f14cb1f3178
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.