PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
2014 | 13 | 4 |

Tytuł artykułu

Transgenic callus culture establishment, a tool for metabolic engineering of Rhodiola rosea L.

Treść / Zawartość

Warianty tytułu

PL
Zakładanie hodowli kalusowej jako narzędzie w inżynierii metabolicznej Rhodiola rosea L.

Języki publikacji

EN

Abstrakty

EN
Agrobacterium tumefaciens EHA101 (pTd33) strain carrying uidA (GUS) reporter gene was used in model experiments on roseroot callus transformation. The T-DNA of pTd33 binary vector plasmid harbors nptII gene conferring resistance to kanamycin, and a uidA reporter gene, encodes the ß-glucuronidase enzyme. Roseroot seeds were sterilized and germinated on half strength MS media of which 70% germinated without any pretreatment. Calli were obtained from leaf segments of the in vitro grown seedlings. Calli was grown on solid MS medium supplemented with 1 mg l⁻¹ NAA and 0.5 mg l⁻¹ BAP. Different types of calli were obtained of which the green and compact type was chosen for transformation experiments. After co-cultivation with agrobacteria, calli were transferred to the same medium supplemented with 20 mg l⁻¹ kanamycin, 200 mg l⁻¹ carbenicillin and 300 mg l⁻¹ claforan with antioxidants (Polyclar and DTE) for selection. GUS test using a titron buffer was applied for monitoring the transformation of the calli. DNAs of 20 individual samples was extracted and subjected for PCR analysis proved the stable transformation in all of the taken samples by amplifying the nptII gene fragment. The method introduced here can be a tool for inserting and over-expressing the genes encoding for hypothesized enzymes to be involved in the biosynthesis of pharmaceutically important bioactive molecules of roseroot and therefore facilitating the applications for callus culture of roseroot in different bioreactor systems for pharmaceutical productions.
PL
Szczep Agrobacterium tumefaciens EHA101 (pTd33) przenoszący gen reporterowy uidA (GUS) został użyty w modelowych doświadczeniach nad transformacją kalusa różeńca górskiego. T-DNA z plazmidy wektora binarnego pTd33 mieści w sobie gen nptII przekazujący odorność kanamycynie, natomiast gen reporterowy uidA koduje enzym ȕ-glukuronidazy. Nasiona korzenia różeńca gorskiego wysterylizowano i poddano kiełkowaniu na połowie zestawu pożywki MS. Spośród nich 70% wykiełkowało bez żadnego wcześniejszego zabiegu. Kalusy otrzymano z segmentów liści sadzonek wyrosłych in vitro. Kalusy wyhodowano na stałej pożywce MS z dodatkiem 1 mg l⁻¹ NAA oraz 0,5 mg l⁻¹ BAP. Uzyskano różne typy kalusa, z których typ zielony i zwarty zostaá wybrany do doświadczeĔ dotyczących transformacji. Po wspólnej hodowli z agrobakteriami kalusy byáy przeniesione to tej samej pożywki uzupełnionej 20 mg l⁻¹ kanamycyny, 200 mg l⁻¹ karbenicyliny oraz 300 mg l⁻¹ klaforanu z przeciwutleniaczami (Polyclar i DTE) do selekcji. Zastosowano test GUS przy użyciu bufora trytronowego do monitorowania kalusów. Wyodrębniono 20 indywidualnych próbek DNA i poddano je analizie PCR, która wykazała stabilną transformację we wszystkich próbkach poprzez amplifikowanie fragmentu genu nptII. Metoda przedstawiona tutaj może być narzędziem insercji i ekspresji kodowania genów do hipotetycznych enzymów, które mają brać udział w biosyntezie ważnych z punku widzenia farmaceutycznego molekuł różeca górskiego, co ułatwi zastosowanie hodowli kalusów różeńca górskiego w różnych systemach bioreaktorów w produkcji farmaceutycznej.

Wydawca

-

Rocznik

Tom

13

Numer

4

Opis fizyczny

p.92-106,fig.,ref.

Twórcy

  • Department of Genetics and Plant Breeding, Corvinus University of Budapest, P.O.Box 53, H-1518 Budapest, Hungary
autor
  • Department of Genetics and Plant Breeding, Corvinus University of Budapest, P.O.Box 53, H-1518 Budapest, Hungary
autor
  • Department of Genetics and Plant Breeding, Corvinus University of Budapest, P.O.Box 53, H-1518 Budapest, Hungary
autor
  • Department of Genetics and Plant Breeding, Corvinus University of Budapest, P.O.Box 53, H-1518 Budapest, Hungary
autor
  • Department of Genetics and Plant Breeding, Corvinus University of Budapest, P.O.Box 53, H-1518 Budapest, Hungary

Bibliografia

  • Bornhoff B.A., Harst M., 2000. Establishment of embryo suspension cultures of grapevines (Vitis L.). Vitis., 39, 27–29.
  • Clausen R.T., 1975. Sedum of North America north of the Mexican Plateau. Cornell Univ. Press, Ithaca, NY, 742 pp.
  • Debnath S.C., 2009. Zeatin and TDZ-induced shoot proliferation and use of bioreactor in clonal propagation of medicinal herb, roseroot (Rhodiola rosea L). J. Plant Biochem. Biotech., 18(2), 245–248.
  • Furmanowa M., Oledzka H., Michalska M., Sokolnicka I., Radomska D., 1995. Rhodiola rosea L. (Roseroot): In vitro regeneration and the biological activity of roots. In: Medicinal and Aromatic Plants VIII, Bajaj Y.P.S. (ed.). Biotech. Agricult. Forest., 33, 412–426.
  • Galambosi B., 2006. Demand and availability of Rhodiola rosea L. row material. In: Medicinal and Aromatic Plants, Bogers R., Cracer L., Lange D. (eds). Springer, Netherlands, 223–236.
  • Gelvin S.B., 2000. Agrobacterium and plant genes involved in T-DNA transfer and integration. Ann. Rev. Plant Physiol. Plant Mol. Biol., 51, 223–256.
  • György Z., Tolonen A., Pakonen M., Neubauer P., Hohtola A., 2004. Enhancement of the production of cinnamyl glycosides in CCA cultures of Rhodiola rosea through biotransformation of cinnamyl alcohol. Plant Sci. 166/1, 229–236.
  • Hoffmann B., Trinh T.H., Leung J., Kondorosi A., Kondorosi E., 1997. A new Medicago truncatula line with superior in vitro regeneration, transformation and symbiotic properties isolated through cell culture selection. Mol. Plant Microbe Interact., 10, 307–315.
  • Hung S.K., Perry R., Ernst E., 2011. The effectiveness and efficacy of Rhodiola rosea L.: A systematic review of randomized clinical trials. Phytomedicine,18, 235–244.
  • Jefferson R.A., Kavanagh T.A., Bevan M.W., 1987. GUS fusions: beta-glucuronidase as a sensitive and versatile gene fusion marker in higher plants. EMBO, 6, 3901–3907.
  • Kołodziej B., Sugier D., 2013. Influence of plants age on the chemical composition of roseroot (Rhodiola rosea L.). Acta Sci. Pol., Hortorum Cultus, 12(3), 147–160.
  • Kurkin V.A., Zapesochanaya G.G., Nukhimovskii E.L., Klimakhin G.I., 1988. Chemical composition of rhizomes of Mongolian Rhodiola rosea L. population introduced into districts near Moscow. Chem. Pharm. J., 22(3), 324–326.
  • Kurkin V.A., Zapesochnaya G.G., Dubichev A.G., Vorontsov E.D., Aleksandrova I.V., Panova R.V., 1991. Phenylpropanoids of callus culture of Rhodiola rosea. Chem Nat Comp., 27(4), 419–425.
  • Lichtenstein C., Draper J., 1986. Genetic engineering of plants. In: DNA Cloning: A practical approach, Vol. II, Glover D.M. (ed.). IRL Press, Oxford, 67–119.
  • Lindsey K., Wei W., Clarke M.C., McArdle H.F., Rooke L.M., Topping J.F., 1993. Tagging genomic sequences that direct transgene expression by activation of a promoter trap in plants. Transgen. Res., 2, 33–47.
  • Liu H., Xu Y., Liu Y., Liu C., 2006. Plant regeneration from leaf explants of Rhodiola fastigiata. In Vitro Cell. Dev. Biol. Plant., 42, 345–347.
  • MA L.Q., Gao D.Y., Wang Y.N., Wang H.H., Zhang J.X., Pang X.B., Hu T.S., Lu S.Y., Li G.F., Ye H.C., Li Y.F., Wang H., 2008. Effects of overexpression of endogenous phenylalanine ammonia-lyase (PALrs1) on accumulation of salidroside in Rhodiola sachalinensis. Plant Biol. 10, 323–333.
  • Ma L.Q., Liu B.Y., Gao D.Y., Pang X.B., Lu S.Y., Yu H.S., Wang H., Yan F., Li Z.Q., Li Y.F., Ye H.C., 2007. Molecular cloning and overexpression of a novel UDP-glucosyltransferase elevating salidroside levels in Rhodiola sachalinensis. Plant Cell Rep. 26, 989–999.
  • Mirmazloum I., György Z., 2012. Review of the molecular genetics in higher plants towards salidroside and cinnamyl alcohol glycosides biosynthesis in Rhodiola rosea L. Acta Aliment., 41(Suppl.), 134–147.
  • Mozsár J., Viczián O., Süle S., 1998. Agrobacterium-mediated genetic transformation of an interspecific grapevine. Vitis., 37, 127–130.
  • Murashige T., Skoog F., 1962. A revised medium for rapid growth and bioassays with tobacco tissue cultures. Physiol. Plant., 15, 473–497.
  • Ohba H., 1981. A revision of the Asiatic species of Sedoideae (Crassulaceae). Part 2. Rhodiola (subgen. Rhodiola, sect. Rhodiola). J. Fac. Sci. Univ. Tokyo, 3, 13, 65–119.
  • Ohba H., 1989. Biogeography of the genus Rhodiola (Crassulaceae), with special reference to the Àoristic interaction between the Himalaya and Arctic region. In: Current aspects of biogeography in West Pacic and East Asian Regions, Vol. I., Ohba H (ed.). Univ. of Tokyo, Tokyo, 115–133.
  • Oláh R., 2005. Methods for genetically transforming grape. Dissertation, Corvinus Univ. of Budapest.
  • Panossian A., Wikman G., Sarris J., 2010. Rosenroot (Rhodiola rosea): Traditional use, chemical composition, pharmacology, and clinical efficacy. Phytomedicine, 17, 481–493.
  • Perl A., Lotan O., Abu-Abied M., Holland D., 1996. Establishment of an Agrobacteriummediated transformation system for grape (Vitis vinifera L.): The role of antioxidants during grape-Agrobacterium interactions. Nat. Biotechnol., 14, 624–628.
  • Sawada H., Ieki H., Matsuda I., 1995. PCR detection of Ti and Ri plasmids from phytopathogenic Agrobacterium strains. Appl. Environ. Microbiol. 61, 828–831.
  • Szegedi E., Oberschall A., Bottka S., Oláh R., Tinland B., 2001. Transformation of tobacco plants with virE1 gene derived from Agrobacterium tumefaciens pTiA6 and its effect on crown gall tumor formation. Int. J. Hort. Sci., 7, 54–57.
  • Tasheva K., Kosturkova G., 2010. Bulgarian golden root in vitro cultures for micropropagation and reintroduction. Cent. Eur. J. Biol. 5(6), 853–863.
  • Tasheva K., Kosturkova G., 2012a. The role of biotechnology for conservation and biologically active substances production of Rhodiola rosea: endangered medicinal species. Sci. World J., vol. 2012, Article ID 274942, 13 pages.
  • Tasheva K., Kosturkova G., 2012b. Towards agrobacterium-mediated transformation of the endangered medicinal plant goldenroot. AgroLife Sci. J., 1(1), 132–138.
  • Tasheva K., Kosturkova G., 2013. Induction of indirect organogenesis in vitro in Rhodiola rosea – an important medicinal plant. Sci. Bull., ser. F, Biotechnologies, 17, 16–23.
  • Tinland B., Schoumacher F., Gloeckler V., Bravo-Angel A.M., Hohn B., 1995. The Agrobacterium tumefaciens virulence D2 protein is responsible for precise integration of T-DNA into the plant genome. EMBO J., 14, 3585–3595.
  • Weglarz Z., Przybyl J.L., Geszprych A., 2008. Roseroot (Rhodiola rosea L.): Effect of internal and external factors on accumulation of biologically active Compounds. In: bioactive molecules and medicinal plants, Ramawat K.G., Mérillon J.M. (eds). Springer, Berlin, PP 297–315.
  • Yu H.S., Ma Q.L., Zhang J.X., Shi G.L., Hu Y.H., Wang Y.N., 2011. Characterization of glycosyltransferases responsible for salidroside biosynthesis in Rhodiola sachalinensis. Phytochemistry, 72, 862–870.
  • Zhang J.X., Ma L.Q., Yu H.S., Zhang H., Wang H.T., Qin Y.F., Shi G.S., Wang Y.N., 2011. A tyrosine decarboxylase catalyzes the initial reaction of the salidroside biosynthesis pathway in Rhodiola sachalinensis. Plant Cell Rep., 30(8), 1443–1453.
  • Zupan J., Muth T.R., Draper O., Zambryski P., 2000. The transfer of DNA from Agrobacterium tumefaciens into plants: a feast of fundamental insights. Plant J., 23, 11–28.

Typ dokumentu

Bibliografia

Identyfikatory

Identyfikator YADDA

bwmeta1.element.agro-494e2fbd-30f5-442e-8331-1e4607c8d8cf
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.