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Summary. This publication is devoted to 
practical aspects of a new method of form correc-
tion of planar rod constructions. This method 
should be used after the initial shape of the frame 
construction is already defined. At the same time, 
suggested method makes it possible to determine 
the components of the stress-strain state of the 
construction and has the same mathematical 
foundation as a method of cutting out of nodes in 
theoretical mechanics. Also, the article demon-
strates the principle of applying the method on 
the example of correction of form of elementary 
frame construction with hinge joint of rods. An 
example illustrates the advantages of this method 
over methods of numerical simulation, because it 
does not require changing of instrument base dur-
ing the transition from automated shaping of con-
struction to determination of efforts in its rods. 

Key words: geometric modeling, discrete 
model, rod frame constructions, differential regu-
larities, numerical simulations. 

 
INTRODUCTION 

 
Most of the tasks of building mechanics 

involve determination of certain components 
of the stress-strain state (SSS) of construc-
tions. It is assumed, that the geometrical pa-
rameters of structures are predetermined and 
represent the initial conditions for calcula-
tions. In the case, when before the calcula-
tions the morphogenesis process is carried 
out, it is necessary to apply two distinct me-
thods: the first one – to determine the actual 
form of construction, the second one – to 
calculate the parameters of SSS. 

At the present stage of development of 
computer aided design systems the most 
programs intended for calculation of con-

struction for strength and stability involve 
the ability to import finite data from the spe-
cialized software`s environment for building 
of graphic models of these constructions. 
However, models that are products of graph-
ics programs created directly by the users 
(architects, engineers, designers, etc.), while 
automated algorithms for morphogenesis of 
constructions in the environment of these 
programs are nearly absent. Should be add-
ed, that existing mathematical algorithms of 
morphogenesis of building structures do not 
have sufficient variability to describe the 
features of work of construction elements in 
the process of loading and operation with 
required accuracy. 

All the above mentioned points to the 
need to prepare a theoretical and tool base to 
create a unified method of building struc-
tures shape modeling, with possibility of 
their adjustments and subsequent calculation 
of component of SSS of their elements.  

One of the most pressing areas of this 
problem is the formation and modeling of 
the rod building structures’ work. Rod con-
structions have an important place among 
building structures, because their designing 
requires from engineers a high level of skills 
and responsibility. They are used in the de-
sign of beam coatings, trusses and covering 
membranes, bearing and self-supporting 
frames of buildings, frame structures and 
many others. 

In this publication we will consider the 
outlined problems in the context of research-
ing and modeling of planar rod or frame 
structures with hinge joint of rods. 
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PURPOSE OF WORK 
 
Basic principles of morphogenesis prob-

lem solving and subsequent adjustment of 
mesh and rod constructions were presented 
in a series of works [1-5]. The main idea of 
described in these works method is to apply 
the fundamental differential patterns be-
tween geometric and physical parameters of 
network structures and external fields for 
systemic redistribution of interaction forces 
between their vertices [6]. At the same time, 
works have the generalizing character and 
dedicated to the realization of mathematical 
apparatus of morphogenesis on examples of 
universal models of network structure (such 
as discrete surfaces, as in [5]). Obvious, that 
for the application of the proposed method 
in the tasks of structural mechanics and me-
chanics of rod systems it is necessary to 
adapt it to some extent, taking into account 
the engineering specifics. Such an adaptation 
is the main purpose of this work. 

 
 

REVIEW OF PREVIOUS RESEARCHES 
 
For a start, we present the basic provi-

sions of the method, summarized in [6], and 
simplified for two-dimensional case. 

Suppose there is some two-dimensional 
rod system with hinge joint in the free and 
basic (reference) nodes. We shall assume, 
that the known topological characteristics of 
the system (number and order of rods con-
nection) and rigidity (stiffness) parameters 
of its rods ℵi,j, which are expressed by the 
ratios of the absolute values of longitudinal 
efforts in rods Ri,j and their lengths δi,j: 
 

.,,, jijiji R δ=ℵ  (1) 
 
It is known, that the equilibrium state of 

each node can be described, using the prin-
ciple of cutting out of units by replacing 
each rod, that connects to the node, on corre-
sponding resistance efforts. Omitting the 
projection of vectors of forcesℑі, acting on 
the node from the outside, and vectors of in-
ternal effortsRi,j, which cut off rods, on the 
coordinate axes, we obtain the following 

system of equilibrium equations of arbitrary 
node (taking into consideration equality (1)): 
 

( ) ,, 0ss is

n

1j
jiij =ℑ+ℵ⋅−∑

=

 (2) 

 
where: s – generalizing designation of coor-
dinates; n – quantity of uncommitted nodes 
of construction.  

If we assume, that the rigidity parameters 
of rods ℵi,j and external loadℑі is prede-
termined, then system of equations of type 
(2), composed for all free nodes of rod con-
struction, can be solved relative to coordi-
nates of these nodes. In this way, the process 
of prior morphogenesis of construction can 
be implemented. Having the coordinates of 
nodes, and determining the length of rods, it 
is not difficult to calculate internal forces 
from formula (1). 

To make it possible to determine appro-
priate rigidity parameters of rods ℵi,j during 
adjustment of position of nodes, and to be 
able to calculate internal forces, the system 
(2) should be supplemented by a system of 
parametric equations of rod’s state. These 
equations have the following form: 

1) for the rods, connecting two free nodes 
of construction (Sa and Sb): 
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2) for the rods, that connect one free and 

one basic nodes (Sa and Sref):  
 

+ϕ−ℵ⋅δ⋅χ+ℵ⋅δ∑
−

=
arefa

2
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1m

1i
ia

2
ia ,,,,  

( ) ,, 0ByRxR refarefrefyrefrefx =+⋅+⋅+  
(4) 

 
where: m and n – number of nodes adjacent 
to the a-th and b-th (or ref-th) nodes, χ – 
some non-negative constant; ϕa and ϕb – 
nodal values of the scalar potential (of the 
field of objective function), Rref – values of 
efforts in the rods that are connected to the 
rocker bearing, Вa,b and Вa,ref – general oper-
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ating constants of integration. 
In a matrix form the process of forming 

and subsequent correction of rod construc-
tion shape can be described by following 
system: 
 

[ ] [ ] [ ] [ ]( )
{ } ( )[ ] { } { }(

( )[ ] { })
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
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ℵ⋅δ+

+ϕ−ϕ⋅δ=ℵ
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−
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12pp

p1p11pp gs

 (5) 

 
Here: [s] – matrix of coordinates (with di-
mension k×2, where k – the quantity of 
nodes of the model), [g] – matrix of the 
boundary conditions (with dimension k×2), 
[ℑ] – matrix of external influences (with di-
mension k×2), [ℵ] – matrix of stiffness pa-
rameters of rod structure (with dimension 
k×k), {ℵ} – column vector of stiffness pa-
rameters of rod structure, [δ2] – matrix of 
geometric parameters of rod structure (with 
dimension h×h, where h – quantity of mod-
el’s rods), {ϕ} – column vector of nodal 
values of the scalar potential, {ϕ/} – column 
vector of expected nodal parameters of the 
scalar potential, p – index corresponding to 
the current step of the iterative calculation. 

Solving the system (5) (if necessary using 
iterative calculation), we define values of 
corrected parameters of rods rigidity and co-
ordinate of nodes of the model. 

 
 

CORRECTING OF THE SHAPE 
OF ROD CONSTRUCTIONS 

 
Changing the position of nodes, using 

model systems (5), must be carried out by 
replacing the current values of the scalar po-
tential ϕi on expected values ϕ/

i. It is as-
sumed, that external influenceℑі is in gra-
dient connection with the current scalar po-
tential. However, in [7] was founded that 
this relationship is not required. Moreover, 
there is possible the variant of local correc-
tion of construction. In this case the potential 
ϕi should be corrected only in certain points 
of the model. 

If we need to move the selected set of 
nodes in the individual order, each of these 
nodes will have the functions of the scalar 
potential. Thus, in each node, which exposed 
by moving, scalar potential value will be 
represented by its objective function. Obvi-
ously, the objective function value must de-
cline to zero under the condition, that the 
coordinates of the node come near to values 
set by the engineer. Therefore, objective 
function of an arbitrary i-th node Sі should 
be presented in the form of its distance from 
a certain established point T: 
 

=ς=ϕ=ϕ ),()( iiii yxs  
212

iT
2

iT yyxx ))()(( −+−⋅ϑ= . 
(6) 

 
Here: ϑ – coefficient, entered to effect on 
speed of convergence of the iterative calcu-
lation. 

The value of the expected node potential 
will be zero: ϕ/

i = 0. 
Let's consider the example of shape cor-

rection of elementary rod construction in the 
form of a planar frame, which consist of 2 
rods and has 2 hinged-fixed reference node 
(A and B) and only 1 free hinge node V with 
the given loadℑV (see. Fig. 1, a). 

 

a) 

b) 

 
 
Fig. 1. The rod frames: a − frame AVB; 
b − frame ACVDB, obtained by adding nodes 
C and D to the frame AVB 

 
 
This frame is statically undetectable. In 

addition, it can not be corrected, using the 
system (5). The fact is, that in order to prop-
erly influence to the changes of rigidity pa-
rameters of rods, using nodal potentials, in 
each parametric equation of rods of type (3) 
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or (4) must be contained various combina-
tions of nodal potentials. In our case, the eq-
uations of rods AV and VB contain only po-
tentials ϕV of node V. These equations have 
the following form: 

 
+ϕ−ℵ⋅δ+ℵ⋅δ⋅χ VBV

2
BVVA

2
VA ,,,,  

( ) 0ByRxR VAAAyAAx =+⋅+⋅+ ,
, 

(7) 

+ϕ−ℵ⋅δ⋅χ+ℵ⋅δ VBV
2

BVVA
2

VA ,,,,  

( ) 0ByRxR BVBByBBx =+⋅+⋅+ ,
. 

(8) 

 
From equations (7) and (8) we see, that 

when we change potential ϕV, then parame-
ters ℵA,V and ℵV,B will change in direct pro-
portion. In this case, the trajectory of the 
node V can not be controlled. 

To make control of rigidity parameters of 
construction possible, we should halve rods 
AV and VB by additional nodes C and D re-
spectively. We obtain the following rela-
tions: 
 

2VAVCCA ,,, δ=δ=δ , (9) 

2BVBDDV ,,, δ=δ=δ . (10) 

 
The resulting structure is shown at Fig. 1.b. 

Obviously, if any external forces will not 
act the additional nodes C and D, then inter-
nal forces in a rods AC and CV, VD and DB 
will be equal and in fact will remain in solid 
segments AV and VB. That is: 

 

VAVCCA RRR ,,, == , (11) 

BVBDDV RRR ,,, == . (12) 

 
Considering the equation (9) – (12), we 

write the relations between the stiffness pa-
rameters of rods AC, CV and AV, as well as 
VD, DB and VB: 

 

VAVCCA 2 ,,, ℵ⋅=ℵ=ℵ , (13) 

BVBDDV 2 ,,, ℵ⋅=ℵ=ℵ . (14) 

 
Let’s compose the equilibrium equations 

of type (2) for all free nodes (C, V and D): 

 
−⋅ℵ+⋅ℵ VVCACA ss ,,  

( ) 0sCVCCA =⋅ℵ+ℵ− ,, , 
(15) 

−⋅ℵ+⋅ℵ DDVCVC ss ,,  

( ) 0s VsVDVVC =ℑ+⋅ℵ+ℵ− ,, , 
(16) 

−⋅ℵ+⋅ℵ BBDVDV ss ,,  

( ) 0sDBDDV =⋅ℵ+ℵ− ,, . 
(17) 

Rewrite equation (15) – (17), taking into 
account the identities (13) and (14) and all 
possible simplifications: 

 
0ss2s VCA =+⋅− , (18) 

−⋅ℵ+⋅ℵ DBVCVA ss ,,  

( ) 02s VsVBVVA =ℑ+⋅ℵ+ℵ− ,, , 
(19) 

0ss2s BDV =+⋅− . (20) 
 
Now we compose system of parametric 

equations of state for rods AC, CV, VD and 
DB: 

 
+ϕ−ℵ⋅δ+ℵ⋅δ⋅χ CVC

2
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2
CA ,,,,  

( ) 0ByRxR CAAAyAAx =+⋅+⋅+ ,
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+ℵ⋅δ⋅χ+ℵ⋅δ VC
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2
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2

DV =ϕ+ϕ−ℵ⋅δ+ )(,,
, 

(22) 

+ℵ⋅δ⋅χ+ℵ⋅δ DV
2

DVVC
2

VC ,,,,  

0DVBD
2

BD =ϕ+ϕ−ℵ⋅δ+ )(,,
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(23) 

+ϕ−ℵ⋅δ⋅χ+ℵ⋅δ DBD
2

BDDV
2

DV ,,,,  

( ) 0ByRxR BDBByBBx =+⋅+⋅+ ,
. 

(24) 

 
We shall add pairs of equations (21) with 

(22) and (23) with (24), given the identity 
(9), (10), (13) and (14), setting the coeffi-
cient χ = 2 (according to [2], since as quan-
tity of model’s nodes is higher than the 
quantity of rods), and performing all possi-
ble simplification: 

 

( ) −ℵ⋅δ⋅+ℵ⋅δ⋅ BVBVVAVA ,
2

,,
2

, 213  

+ϕ+ϕ⋅− )( VC2  
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(25) 
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( ) −ℵ⋅δ⋅+ℵ⋅δ⋅ BVBVVAVA ,
2

,,
2

, 321  

+ϕ⋅+ϕ− )( DV 2  

( ) 0ByRxR BDBByBBx =+⋅+⋅+ , . 

(26) 

 
Using equations (18)-(20), we write the 

components of the first expression of system 
(5). They will have the following form: 

1. The matrix of coordinates [s]: 
 

[ ] [ ],YXs =  (27) 
where: {X} and {Y} – column vectors of co-
ordinates of nodes, which have the form: 

 

{ } [ ]DVC
T xxxX = , (28) 

{ } [ ]DVC
T yyyY = . (29) 

 
2. The matrix of boundary conditions [g]: 
 

[ ] [ ],yx ggg =  (30) 

 
where: {gx} and {gy} – column vectors of 
boundary conditions, which have the form: 
 

{ } [ ]BA

T

x x10x1g ⋅−⋅−= , (31) 

{ } [ ]BA

T

y y10y1g ⋅−⋅−= . (32) 

 
3. The matrix of external forces [ℑ]: 
 

[ ] [ ]yx ℑℑ=ℑ , (33) 

 
where: {ℑx}  and {ℑy} – column vectors of 
external forces, which have the form: 
 

{ } [ ]020
Vx

T
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{ } [ ]020
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T

y ℑ=ℑ . (35) 

 
4. The matrix of stiffness parameters [ℵ]: 
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Now, on the basis of equations (25) and 
(26) we can write the components of the 
second expression of system (5). They will 
have the following form: 

1. The column vector of stiffness parame-
ters of rod construction {ℵ}: 

 

{ } [ ]BVVA
T

,, ℵℵ=ℵ . (37) 

 
2. The matrix of geometric parameters of 

rod structure [δ2]: 
 

[ ] ( )
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3. The column vector of expected nodal 

potentials {ϕ/}: 
 

{ } [ ] [ ]00BVVA

T =ϕϕ=ϕ /
,

/
,

/ . (39) 
 

4. The column vector of current nodal po-
tentials {ϕ}: 
 

{ } [ ]=ϕϕ=ϕ BVVA
T

,,  

[ ]DVVC 22 ϕ⋅+ϕϕ+ϕ⋅= . 
(40) 

 
Call attention to the elements of the col-

umn vector {ϕ}. If one follows an algorithm 
of application of the system (5) and choose 
as an objective functions the distances of 
type (6), then in case of the unsuccessful se-
lection of coefficient ϑ and low value of cal-
culation error iterative calculation may be 
divergent. This can happen, because at the 
stage close to achieving nodes of their 
planned coordinates, displacement step of 
one of the nodes will exceed a distance to 
the point of his appointment. At the same 
time algorithm (5) will try to shorten the dis-
tance of a particular node to the established 
point by subsequent replacement of poten-
tials (objective functions) "without realizing 
a miss". This will only lead to further dis-
tancing of the node from its destination. 

To avoid the described effect, should use 
as a coefficient ϑ not a constant but logical 
operator. The operator ϑ must analyze the 
differences ∆ϕ between elements of the col-
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umn vector of potentials {ϕ} on the current 
and previous steps of iterative calculation: 

 
1p

ji
p

ji
p

ji
−ϕ−ϕ=ϕ∆ ,,, . (41) 

 
Thus, the value of operator ϑ should be 

determined by the expression: 
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This character of dependence of function 

from the values of the argument can be de-
scribed by hyperbolic tangent of the argu-
ment (such as logical operators used in neu-
ral modeling [11-13]). Such continuous 
function will look like: 
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ji
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)exp(

,

,
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ji
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ϕ∆⋅α−−
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(43)  

 
where: α – coefficient, whose value deter-
mines the sharpness of the character chang-
ing of the function (43) during the transition 
from –1 to 1 (through 0). 

Therefore, the column vector of the cur-
rent potentials {ϕ p}, which will take into 
account the values of each component at the 
previous step of calculation, will have the 
following form: 

 

{ } [ ]=ϕ⋅ϑϕ⋅ϑ=ϕ p
BV

p
BV

p
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p
VA
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,,,,  

( ) ( )[ ]p
D

p
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p
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VA 22 ϕ⋅+ϕ⋅ϑϕ+ϕ⋅⋅ϑ= ,, . 

(44) 

 
Let us consider the objective functions 

that make up the column vector {ϕ p}. 
Obviously, for the node V the function ϕV 

is defined as a distance to a certain estab-
lished point T (using formula (6)): 
 

212
VT

2
VTV yyxx ))()(( −+−=ϕ . (45) 

 
Here, we don’t have to use the coefficient 

ϑ, because it is already counted as a logical 

operator in the expression (44). 
For nodes C and D objective functions 

can no longer be defined as the distances to 
the centers of segments AT and TB, because 
these distances are always equal (see. 
Fig. 2). 

For the selection of objective functions of 
scalar potential in nodes C and D we will 
use the following fact. Obviously, in case of 
coincidence of node V with point T, vertices 
of triangles ACT and BDT will be placed on 
straight lengths AT(V) and BT(V) respec-
tively. Then will be valid the following 
equations: 

 

CTACAT += , (46) 

DTADBT += . (47) 
 

 
 

Fig. 2. The rod frame ACVDB: 
1) at the moment of formation (dashed); 

2) in corrected state (solid) 
 
 
However, until the equalities (46) and 

(47) are not valid, iterative calculation 
should be continued. The values, that will 
characterize proximity to the completion of 
the calculation, will be objective function in 
the nodes C and D. The following differ-
ences will be serve by them: 

 
=+−=ϕ )( CTACATC  

−−+−= 212
AT

2
AT yyxx ))()((  

−−+−− 212
AC

2
AC yyxx ))()((  

212
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2
CT yyxx ))()(( −+−− , 

(48) 
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=+−=ϕ )( DTBDBTD  

−−+−= 212
BT

2
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−−+−− 212
BD
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BD yyxx ))()((  

212
DT

2
DT yyxx ))()(( −+−− . 

(49) 

 
Should be added, that algorithmic imple-

mentation of the system (5) can be some-
what simplified by excluding the coordinates 
of fictitious nodes C and D from the calcu-
lating process. To do this we have to make 
two steps: 

1) to bring the system (18) – (20) to the 
static equations describing the equilibrium 
of node V only: 

 
−⋅ℵ+⋅ℵ BBVAVA ss ,,  

( ) 0s VsVBVVA =ℑ+⋅ℵ+ℵ− ,, , 
(50) 

 
from where we can easily determine the co-
ordinates of node V. 

2) to rewrite the formulas (48) and (49), 
taking into account equations (18) and (20): 
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(52) 

 
The values of internal forces in the rods 

of construction can be determined from the 
formula (1): 

 

jijijiR ,,, δ⋅ℵ= . (53) 

 
Let’s consider a few options of determin-

ing the components of SSS of rod frame 
ACVDB. 

The values of the load vector, which act-

ing on node V, the value the initial rigidity 
parameters of the frame, as well as rigidity 
parameters, nodes coordinates and internal 
efforts after adjustment of position of node 
V, are shown in Table 1. The initial and cor-
rected frames are shown in Figure 3. 

 
Table 1 

 

The load in the node V Parameters  
of SSS of  
the frame ℑxV = –1 

ℑyV = –1 
ℑxV = –1 
ℑyV = –1 

ℑxV = 2 
ℑyV = –1 

Variant → a) b) c) 

xA 1 2 1 
xB 5 5 5 
xT 3 4 1 
yA 1 3 1 
yB 1 1 1 
yT 6 6 5 

ℵA,V –1 –2 –1 

In
co

m
in

g
 

ℵV,B –1 –2 –1 

Iterations 150 250 150 
xC 2.00001 3.00216 1.00159 
xV 3.00003 4.00433 1.00318 
xD 4.00001 4.50216 3.00159 
yC 3.49998 4.4961 2.99946 
yV 5.99995 5.99219 4.99893 
yD  3.49998 3.4961 2.99946 

ℵA,V –0.35 –0.46085 0.25007 
ℵV,B 0.15 0.07594 –0.50023 
RA,V –1.8848 –1.65975 1.00002 

C
al

cu
la

te
d

 

RV,B 0.80776 0.38657 –2.82822 

 
 

CONCLUSIONS 
 
Demonstrated method allows not only to 

correct the shape of pre-formed structures, 
but also to determine its internal efforts in the 
rods. At the same time shown approach to 
choice potential objective functions can be 
greatly varied, giving scope for the ingenuity 
of engineers and researchers. In addition, it is 
possible to use logical operators in correcting 
the position of nodes of constructions. 

All of these provides for the possibility of 
application of the suggested method not only 
in tasks of theoretical and structural mechan-
ics, but also in other fields of science and 
technology. 
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a) 

 

b) 

 

c) 

 
 

Fig. 3. Variants of frames ACVDB, formed 
under given in Table 1 input parameters and 

after correction 
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ФОРМООБРАЗОВАНИЕ И КОРРЕКЦИЯ 
ПЛОСКИХ СТЕРЖНЕВЫХ КОНСТРУКЦИЙ 

С НЕБОЛЬШИМ КОЛИЧЕСТВОМ 
СВОБОДНЫХ УЗЛОВ 

 
Аннотация. Публикация освещает прак-

тические аспекты метода корректировки фор-
мы плоских стержневых конструкций, кото-
рый следует применять после их предвари-
тельного формообразования. Метод позволяет 
определять компоненты напряженно-
деформированного состояния конструкции и 
имеет ту же математическую основу, что и 
метод вырезания узлов теоретической меха- 

ики. Также, в статье продемонстрирован 
принцип использования метода на примере 
корректировки формы элементарной конст-
рукции с шарнирным соединением стержней. 
Пример показывает преимущества данного 
метода над методами численного моделиро-
вания, так как не требует смены инструмен-
тальной базы при переходе от формообразо-
вания конструкции к определению усилий в 
её стержнях. 
Ключевые слова: геометрическое моде-

лирование, дискретная модель, стержневые 
рамные конструкции, дифференциальные за-
кономерности, численное моделирование. 

 
 
 
 


