PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
2016 | 25 | 5 |

Tytuł artykułu

Chelant-assisted accumulation of Cd, Cu, and Zn in rapeseed (Brassica napus L.) biomass as a renewable energy feedstock

Warianty tytułu

Języki publikacji

EN

Abstrakty

EN
This article discusses the environmental concerns regarding soil contamination by heavy metals and the possibility of growing a high biomass-yielding crop (i.e., rapeseed) as a tool of phytoremediation. The aim of our research was to investigate the growth parameters and the capacity of rapeseed to accumulate Cd, Cu, and Zn from the contaminated soil and to investigate the effects of the chelants (EDTA, EDDS) as potential heavy metal mobility-enhancing agents. A pot experiment was performed under greenhouse conditions where rapeseed was grown on heavy metal-contaminated soil taken from former septic drain fields. Chelants were applied twice using doses of 3 mmol kg-1 of wet soil weight. Plants from contaminated soil produced more biomass and heavier seeds. The highest Cd concentrations were detected in rapeseed stems and leaves: Cu in roots and Zn in seeds and stems with leaves. Rapeseed in some cases exhibited translocation factor values for single plant parts greater than unity, whereas the bioconcentration factor was always below unity. Detected concentrations of Cd, Cu, and Zn in the biomass indicate that rapeseed may be considered an excluder rather than accumulator. Chelant application did not provide the expected enhancing effect on heavy metal uptake by rapeseed.

Słowa kluczowe

Wydawca

-

Rocznik

Tom

25

Numer

5

Opis fizyczny

p.1985-1994,fig.,ref.

Twórcy

  • Institute of Environment and Ecology, Aleksandras Stulginskis University, Universiteto str. 11, Akademija LT-53361, Kaunas dist., Lithuania
  • Institute of Environment and Ecology, Aleksandras Stulginskis University, Universiteto str. 11, Akademija LT-53361, Kaunas dist., Lithuania
autor
  • Department of Civil, Environmental and Natural Resources Engineering, Lulea University of Technology, 971 87 Lulea, Sweden

Bibliografia

  • 1. CAUSSY D., GOCHFELD M., GURZAU E., NEAGU C., RUEDEL H. Lessons from case studies of metals: investigating exposure, bioavailability and risk. Ecotox. Environ. Safe. 56, 45, 2003.
  • 2. SILVETTI M., CASTALDI P., HOLM P.E., DEIANA S., LOMBI E. Leachability, bioaccessibility and plant availability of trace elements in contaminated soils treated with industrial by-products and subjected to oxidative/ reductive conditions. Geoderma. 214-215, 2014, 2014.
  • 3. WUANA R.A., OKIEIMEN F.E. Heavy metals in contaminated soils: A review of sources, chemistry, risks and best available strategies for remediation. ISRN Ecology. 20, 2011.
  • 4. NAGAJYOTI P.C., LEE K.D., SREEKANTH T.V.M. Heavy metals, occurrence and toxicity for plants: a review. Environ. Chem. Lett. 8, 199, 2010.
  • 5. ALLOWAY B.J., editor. Heavy metals in soils: trace metals and metalloids in soils and their bioavailability. 614, Dordrecht: Springer Science + Business Media; 2013.
  • 6. SETH C.S., REMANS T., KEUNEN M., JOZEFCZAK M., GIELEN H., OPDENAKKER K., WEYENS N., VANGRONSVELD J., CUYPERS A. Phytoextraction of toxic metals: a central role for glutathione. Plant. Cell. Environ. 35, 334, 2012.
  • 7. TANG X., LI X., LIU X., HASHMI M.Z., XU J., BROOKES P.C. Effects on inorganic and organic amendments on the uptake of lead and trace elements by Brassica chinensis grown in an acidic red soil. Chemosphere. 119, 177, 2015.
  • 8. MEERS E., VAN SLYCKEN S., ADRIAENSEN K., RUTTENS A., VANGRONSVELD J., DU LAING G., WITTERS N., THEWYS T., TACK F.M. The use of bioenergy crops (Zea mays) for ’phytoattenuation’ of heavy metals on moderately contaminated soils: A field experiment. Chemosphere. 78, 35, 2010.
  • 9. MALIK R.N., HUSAIN S.Z., NAZIR I. Heavy metal contamination and accumulation in soil and wild plants species from industrial area of Islamabad, Pakistan. Pakistan. J. Bot. 42, 291, 2010.
  • 10. ALI H., KHAN E., SAJAD M.A. Phytoremediation of heavy metals – Concepts and applications. Chemosphere. 91, 869, 2013.
  • 11. BAKER A.J.M., BROOKS R.R. Terrestrial higher plants which hyperaccumulate metallic elements – a review of their distribution, ecology and phytochemistry. Biorecovery. 1, 81, 1989.
  • 12. ALKORTA I., HERNANDEZ-ALLICA J., BECERRIL J.M., AMEZAGA I., ALBIZU I., ONAINDIA M., GARBISU C. Chelate-enhanced phytoremediation of soil polluted with heavy metals. Rev. Environ. Sci. Biotechnol. 3, 55, 2004.
  • 13. MARQUES A.P.G.C., RANGEL A.O.S.S., CASTRO P.M.L. Remediation of heavy metal contaminated soils: phytoremediation as a potentially promising clean-up technology. Crit. Rev. Env. Sci. Tec. 39, 622, 2010.
  • 14. SESSITSCH A., KUFFNER M., KIDD P., VANGRONSVELD J., WENZEL W.W., FALLMANN K., PUCHENREITER M. The role of plant-associated bacteria in the mobilization and phytoextraction of trace elements in contaminated soils. Soil. Biol. Biochem. 60, 182, 2013.
  • 15. BOLAN N., KUNHIKRISHNAN A., THANGARAJAN R., KUMPIENE J., PARK J., MAKINO T., KIRKHAM M.B., SCHECKEL K. Remediation of heavy metal(loid)s contaminated soil – To mobilize or to immobilize? J. Hazard. Mater. 266, 141, 2014.
  • 16. PEREZ-ESTEBAN J., ESCOLASTICO C., MOLINER A., MASAGUER A. Chemical speciation and mobilization of copper and zinc in naturally Contaminated mine soils with citric and tartaric acids. Chemosphere. 90, 276, 2013.
  • 17. AGNELLO A.C., HUGUENOT D., VAN HULLEBUSCH E.D., ESPOSITO G. Enhanced phytoremediation: a reviewof low molecular weight organic acids and surfactants used as amendments. Crit. Rev. Env. Sci. Tec. 22, 2531, 2014.
  • 18. EVANGELOU M.W.H., EBEL M., SCAEFFER A. Chelate assisted phytoextraction of heavy metals from soil. Effect, mechanism, toxicity, and fate of chelating agents. Chemosphere. 68, 989, 2007.
  • 19. Lietuvos Respublikos Aplinkos ministro įsakymas dėl Cheminėmis medžiagomis užterštų teritorijų tvarkymo aplinkos apsaugos reikalavimų patvirtinimo 2013-2020 metams (Order of the Minister of Environment of Lithuanian Republic due to the Plan approval on contaminated land management for year 2013-2020). 8Vilnius, 2012 [In Lithuanian].
  • 20. WENZEL W.W., UNTERBRUNNER R., SOMMER P., PASQUALINA S. Chelate-assisted phytoextraction using canola (Brassica napus L.) in outdoors pot and lysimeter experiment. Plant. Soil. 249, 803, 2003.
  • 21. KATINAS V., SAVICKAS J. Biodegalų gamybos ir vartojimo plėtros Lietuvoje įvertinimas (Evaluation of biofuel production and consumption development in Lithuania). Energetika. 2, 77, 2012 [In Lithuanian].
  • 22. CAMPBELL J.E., LOBELL D.B., GENOVA R.C., FIELD C.B. The global potential of bioenergy on abandoned agriculture lands. Environ. Sci. Technol. 42, 5791, 2008.
  • 23. BARDOS R.P., BONE B., ANDERSON-SKOLD Y., SUER P., TRACK T., WAGELMANS M. Crop-based systems for sustainable risk-based land management for economically marginal damaged land. Remediation. 21, 11, 2011.
  • 24. ZURBA K., MATSCHULLAT J. Short Rotation Forestry (SRF) versus rapeseed plantations: Insights from soil respiration and combustion heat per area. Energy. Procedia. 76, 398, 2015.
  • 25. RAILA A., ZVICEVICIUS E. Šiaudai kaip atsinaujinantis vietinis kuras (Straw as a renewable local fuel). Slides presented at Tarptautinė biomasės energetikos konferencija 2014. Technologijos. Tendencijos. Sprendimai (International Biomass Energetic Conference 2014. Technologies. Tendencies. Solutions). 2014 Nov 04; Vilnius, Lithuania. [In Lithuanian].
  • 26. Geotestus. Buvusių nuotekų filtracijos laukų užterštos teritorijos kontrolinis ekogeologinis tyrimas Panevėžio apsk. Panevėžio m. sav. Molainių g. (Control ecogeological studies of Panevėžys municipality former septic drain fields in Molainiai). 10, Vilnius, 2012 [In Lithuanian].
  • 27. DGE Baltic Soil and Environment. Panevėžio miesto savivaldybės Molainių buvusių nuotėkų filtracijos laukų detalieji ekogeologiniai tyrimai (Detailed ecogeological studies of Panevėžys municipality former septic drain filed in Molainiai). 54, Vilnius, 2010 [In Lithuanian].
  • 28. SATKUNAS J., editor. Lietuvos gamtinė aplinka 2013. Tik faktai (Lithuanian natural environment 2013. Only facts). 199, Vilnius, 2014 [In Lithuanian].
  • 29. YOON J., CAO X., ZHOU Q., MA L.Q. Accumulation of Pb, Cu and Zn in native plants growing on a contaminated Florida site. Sci. Total. Environ. 368, 456, 2006.
  • 30. Lietuvos Higienos norma HN 60:2004: Pavojingų cheminių medžiagų didžiausios leidžiamos koncentracijos dirvožemyje (Lithuanian Hygiene Standard HN 60:2004: Maximum permissible concentrations in soil for hazardous chemical compounds). 8, Vilnius, 2004 [In Lithuanian].
  • 31. Rapsai.lt [Internet]. Vasariniai rapsai Fenja (Summer rapeseed Fenja); [cited 2015 Sep 17]. Available from: http://www.rapsai.lt.
  • 32. MARTINEZ-SANCHEZ M.J., GARCIA-LORENZO M.L., PEREZ-SIRVENT C., BECH J. Trace element accumulation in plants from an aridic area affected by mining activities. J. Geochem. Explor. 123, 8, 2012.
  • 33. KABATA-PENDIAS A. Trace elements in soils and plants. 4th edition. 548, Taylor & Francis Group; 2011.
  • 34. ZADOKS J.C., CHANG T.T., KONZAK C.F. A decimal code for the growth stages of cereals. Weed. Res. 14, 415, 1974.
  • 35. CHIBUIKE G.U., OBIORA S.C. Heavy metal polluted soils: effect on plants and bioremediation methods. Appl. Environ. Soil Sci. 12, 2014.
  • 36. MARCHIOL L., ASSOLARI S., SACCO P., ZERBI G. Phytoextraction of heavy metal by canola (Brassica napus) and radish (Raphanus sativus) grown on multicontaminated soil. Environ. Pollut. 132, 21, 2004.
  • 37. BRUNETTI B., FARRAG K., ROVIRA P.S., NIGRO F., SENESI N. Greenhouse and field studies on Cr, Cu, Pb and Zn phytoextraction by Brassica napus from contaminated soils in the Apulia region, Southern Italy. Geoderma. 160, 517, 2011.
  • 38. GHNAYA A.B., CHARLES G., HOURMANT A., HAMIDA J.B., BRANCHARD M. Physiological behaviour of four rapeseed cultivar (Brassica napus L.) submitted to metal stress. C. R. Biol. 332, 363, 2009.
  • 39. PERALTA-VIDEA J.R., LOPEZ M.L., NARAYAN M., SAUPE G., GARDEA-ORRESDAY J. The biochemistry of environmental heavy metal uptake by plants: Implications for the food chain. Int. J. Biochem. Cell. Biol. 41, 1665, 2009.
  • 40. BARAUD F., LELEYTER L. Prediction of phytoavailability of trace metals to plants: Comparison between chemical extractions and soil-grown radish. C. R.Geosci. 344, 385, 2011.
  • 41. DE LA ROSA G., PERALTA-VIDEA J.R., CRUZJIMENEZ G., DUARTE-GARDEA M., MARTINEZMARTINEZ A., CANO-AGUILERA I., SHARMA N.C., SAHI S.V., GARDEA-TORRESDAY J.L. Role of ethylenediaminetetraacetic acid on lead uptake and translocation by tumbleweed (Salsola kali L.). Environ. Toxicol. Chem. 26, 1033, 2007.
  • 42. TOME V.F., BLANCO R.P., LOZANO J.C. The ability of Helianthus annuus L. and Brassica juncea to uptake and translocate natural uranium and 226Ra under different milieu conditions. Chemosphere. 74, 293, 2009.
  • 43. MEERS E., RUTTENS A., HOPGOOD M.J., SAMSON D., TACK F.M.G. Comparison of EDTA and EDDS as potential soil amendments for enhanced phytoextraction of heavy metals. Chemosphere. 58, 1011, 2005.
  • 44. GRCMAN H., VELIKONJA-BOLTA S., LESTAN D. Ethylenediaminedisuccinate as a new chelate for environmentally safe enhanced lead phytoextraction. J. Environ. Qual. 32, 500, 2003.
  • 45. WANG A., LUO C., YANG R., CHEN Y., SHEN Z., LI X. Metal leaching along soil profiles after the EDDS application − A field study. Environ. Pollut. 166, 204, 2012.
  • 46. SHAHID M., POURRUT B., DUMAT C., NADEEM M., ASLAM M., PINELLI E. Heavy-metal induced reactive oxygen species: phytotoxicity and physicochemical changes in plants. Rev. Environ. Contam. T. 232, 1, 2014.
  • 47. OVIEDO C., RODRÍGUEZ J. EDTA the chelating agent under environmental scrutiny. Quim. Nova. 26, 901, 2003.
  • 48. CHANEY R.L., ANGLE J.S., BROADHURST C.L., PETERS A.C., TAPPERO R.V., SPARKS D.L. Improved understanding of hyperaccumulation yields commercial phytoextraction and phytomining technologies. J. Environ. Qual. 38, 1429, 2007.
  • 49. BHARGAVA A., CARMONA F.F., BHARGAVA M., SRIVASTAVA S. Approaches for enhanced phytoextraction of heavy metals. J. Environ. Manage. 105, 103, 2012.
  • 50. WITTERS N., MENDELSON R.O., VAN SLYCKEN S., WEYENS N., SCHREURS E., MEERS E., TACK F., CARLEER R., VANGRONSVELD J. Phytoremediation, a sustainable remediation technology? Conclusions from a case study. I: Energy production and carbon dioxide abatement. Biomass. Bioenerg. 39, 454, 2012

Typ dokumentu

Bibliografia

Identyfikatory

Identyfikator YADDA

bwmeta1.element.agro-4849c380-cc03-48f1-a5c6-2ed7ec9d93d5
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.