PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
2012 | 17 | 2 |

Tytuł artykułu

Red blood cell shape and deformability in the context of the functional evolution of its membrane structure

Autorzy

Warianty tytułu

Języki publikacji

EN

Abstrakty

EN
It is proposed that it is possible to identify some of the problems that had to be solved in the course of evolution for the red blood cell (RBC) to achieve its present day effectiveness, by studying the behavior of systems featuring different, partial characteristics of its membrane. The appropriateness of the RBC volume to membrane area ratio for its circulation in the blood is interpreted on the basis of an analysis of the shape behavior of phospholipid vesicles. The role of the membrane skeleton is associated with preventing an RBC from transforming into a budded shape, which could form in its absence due to curvature-dependent transmembrane protein-membrane interaction. It is shown that, by causing the formation of echinocytes, the skeleton also acts protectively when, in vesicles with a bilayer membrane, the budded shapes would form due to increasing difference between the areas of their outer and inner layers.

Wydawca

-

Rocznik

Tom

17

Numer

2

Opis fizyczny

p.171-181,fig.,ref.

Twórcy

autor
  • Institute of Biophysics, Faculty of Medicine, University of Ljubljana and Jozef Stefan Institute, 1000 Ljubljana, Slovenia

Bibliografia

  • 1. Mohandas, N. and Gallagher, P.G. Red cell membrane: past, present, and future. Blood 112 (2008) 3939-3948.
  • 2. Baines, A.J. Red cell skeleton. Evolution of the spectrin-based membrane skeleton. Transfus. Clin. Biol. 17 (2010) 95-103.
  • 3. Svetina, S., Brumen, M. and Žekš, B. Mechanical behavior of closed layered membranes. in: Biophysics of Membrane Transport (Kuczera, J. and Przestalski, S., Eds.), Proceedings of the Ninth School on Biophysics of Membrane Transport, Polanica Zdroj, Poland, 1988, 151-169.
  • 4. Svetina, S., Iglič A., Kralj-Iglič, V. and Žekš, B. Cytoskeleton and red cell shape. Cell. Mol. Biol. Lett. 1 (1996) 67-78.
  • 5. Svetina, S. and Žekš, B. Shape behavior of lipid vesicles as the basis of some cellular processes. Anat. Rec. 268 (2002) 215-225.
  • 6. Svetina, S., Kuzman, D., Waugh, R.E., Ziherl, P. and Žekš, B. The cooperative role of membrane skeleton and the bilayer in the mechanical behaviour of red blood cells. Bioelectrochemistry 62 (2004) 107-113.
  • 7. Svetina, S. and Žekš, B. The elastic deformability of closed multilayered membranes is the same as that of a bilayer membrane. Eur. Biophys. J. 21 (1992) 251-255.
  • 8. Helfrich, W. Elastic properties of lipid bilayers: theory and possible experiments. Z. Naturforsch. 28c (1973) 693-703.
  • 9. Božič, B., Svetina, S., Žekš, B. and Waugh, R.E. Role of lamellar membrane structure in tether formation from bilayer vesicles. Biophys. J. 61 (1992) 963-973.
  • 10. Raphael, R.M., and Waugh R.E. Accelerated interleaflet transport of phosphatidylcholine molecules in membranes under deformation. Biophys. J. 71 (1996) 1374-1388.
  • 11. Raphael, R.M., Waugh, R.E., Svetina, S. and Žekš, B. Fractional occurrence of defects in membranes and mechanically driven interleaflet phospholipid transport. Phys. Rev. E 64 (2001) 051913(10).
  • 12. Mukhopadhyay, R., Lim, G. and Wortis, M. Echinocyte shapes: bending, stretching, and shear determine bump shape and spacing. Biophys. J. 82 (2002) 1756-1772.
  • 13. Kuzman, D., Svetina, S., Waugh, R.E. and Žekš, B. Elastic properties of the red blood cell membrane that determine echinocyte deformability. Eur. Biophys. J. 33 (2004) 1-15.
  • 14. Svetina, S. and Žekš, B. Membrane bending energy and shape determination of phospholipid vesicles and red blood cells. Eur. Biophys. J. 17 (1989) 101-111.
  • 15. Svetina, S. and Žekš, B. The mechanical behaviour of cell membranes as a possible physical origin of cell polarity. J. Theor. Biol. 146 (1990) 115-122.
  • 16. Svetina, S., Božič, B., Majhenc, J. and Žekš, B. Mechanical properties of closed lamellar membranes and cellular processes. Nonlin. Anal. 47 (2001) 269-280.
  • 17. Käs, J., Sackmann, E., Podgornik, R., Svetina, S. and Žekš, B. Thermally induced budding of phospholipid vesicles - a discontinuous process. J. Phys. II France 3 (1993) 631-645.
  • 18. Ziherl, P. and Svetina, S. Nonaxisymmetric phospholipid vesicles: Rackets, boomerangs and starfish. Europhys. Lett. 70 (2005) 690-696.
  • 19. Kralj-Iglič, V., Svetina, S. and Žekš, B. Shapes of bilayer vesicles with membrane embedded molecules. Eur. Biophys. J. 24 (1996) 311-321.
  • 20. Kralj-Iglič, V., Heinrich, V., Svetina, S. and Žekš, B. Free energy of closed membrane with anisotropic inclusions. Eur. Phys. J. B 10 (1999) 5-8.
  • 21. Božič, B., Kralj-Iglič, V. and Svetina, S. Coupling between vesicle shape and lateral distribution of mobile membrane inclusions. Phys. Rev. E 73 (2006) 041915(11).
  • 22. Sheetz, M.P. and Singer, S.J. Biological-membranes as bilayer couples - molecular mechanism of drug-erythrocyte interactions. Proc. Nat. Acad. Sci. USA 71 (1974) 4457-4461.
  • 23. Mohandas, N. and Evans, E. Mechanical properties of the red cell membrane in relation to molecular structure and genetic defects. Annu. Rev. Biophys. Biomol. Struct. 23 (1994) 787-818.

Typ dokumentu

Bibliografia

Identyfikatory

Identyfikator YADDA

bwmeta1.element.agro-48491073-ca50-403d-84ed-53a6714435a2
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.