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Summary. The present article focuses on the researches’
results of artificial neural networks architecturing using in
automated control systems for acetic acid synthesis unit by
means of GUI, i.e. Neutral Network Toolbox interface of the
software simulator Matlab. The structural schemes of such
systems are attached.
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INTRODUCTION

To run complex systems, it is necessary to
build a model adequately reflecting the properties
of the object to be controlled. In the majority of
cases such model parameters are determined
directly within the process of object is in operation,
i.e. the identification is performed on the basis of
occasional input and output signals. Nowadays the
way of automated control systems architecturing
on the basis of artificial intelligence technologies
usage (e.g. neural networks, fuzzy logic, genetic
algorithms) [6, 8, 11-14, 17, 29, 30] is being
rapidly developed. Those factors which are badly
formalized using common mathematical methods
may be subjected to generalization (e.g. one’s
professional experience or intuition, etc.). Only
few attempts are known to wuse artificial
intelligence technologies in chemical industry.
They are used to interpret sensors’ readings, to run
temperature mode of the technological processes,
to monitor chemical and technological processes
[1-5,7,9, 10, 15, 16, 18-28].

Architecturing and researching of artificial
neural networks performance can be carried out via
software-based simulators. The most commonly
used packages to model neural networks
characteristics are as follows: Neural Works Pro
Plus, Neuro Solution, Matlab (Neural Network
Toolbox), Neuro Wisard, ANsim, Neural Ware and
others. The software is differed by its complexity,
quantity of neurons types and algorithms of
studying maintained at the system.

MATERIALS AND METHODS

The purpose of the present work was the
building up and researching of the neural network
properties which might be used in running of acetic
acid synthesis unit at start-up at PJSC
“SEVERODONETSK AZOT ASSOSIATION”.
For this purpose the statistical data of the acetic
acid synthesis unit while the plant starting up
process were used. Block diagram of the column
acetic acid synthesis is shown in figure 1.

Analysis of the acetic acid synthesis unit as a
as a control object shows that concentration Q of
acetic acid, process temperature T, pressure P in
the synthesis column and the reaction mass level L
in the reactor may be used as the output
coordinates.

To control the synthesis column as control
(input) coordinates can be used the flow rate of
methanol F1 and carbon monoxide F2 fed to the
reactor .
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Fig. 1. Block diagram of the column for synthesizing acetic
acid

All other parameters of the process: the
temperature of the methanol feed T1, supply
pressure of carbon monoxide P2, the temperature
of the feed carbon monoxide T2, should be
attributed to the perturbing parameters.

Information and logic synthesis column
acetic acid is shown in figure 2.
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Fig. 2. Information and logic diagram synthesis column acetic
acid

The environment of  software-based
simulator MATLAB 7.1.0 (GUI - Neural Network
Toolbox interface) was used for building up
process. This pack is recommended for neural
network with different type of activation function
architecturing.

The following parameters were used as the
input data:

1. Inlet methanol consumption.

2. Inlet carbon oxide consumption.
3. Inlet methanol temperature.

4. Inlet carbon oxide pressure.

5. Inlet carbon oxide temperature.

The following parameters were used as the
output data:

1. Reaction mass level at the unit.

2. Reaction mass pressure at the unit.

3. Reaction mass temperature at the unit.

50% of the main observations were involved
in the process of the neural network learning (the
other half was used for verification purposes).

RESULTS

The structure and parameters of the neural
network with feed-forward back propagation
shown at Fig.3 were determined as a result of GUI
- Neural Network Toolbox interface MATLAB
7.1.0.
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Fig. 3. Neural network with feed-forward back propagation
structure

The network was built up on the basis of five
neurons at the network input, five sigmoid
(TANSIG) neurons of a buried layer and three
linear (PURELIN) neurons of an output layer. The
functions implementing learning algorithm as well
as training and error functions ensuring minimum
relative accuracy of data approximation were
determined to build up the network. The respective
parameters of three networks for the acetic acid
synthesis units are given in tab. 1.

While making a comparison of the networks
respective parameters, the following observations
were found: the minimum relative accuracy is
insured by the network based on gradient descent
method with disturbance as a learning function,
function of the gradient descent with account of the
moments as a training function, mean-square error
as an error function.
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Table 1. Neural networks parameters with feed-forward back propogation

Lea}rnlng algquthm Training . Output Relative Average
Net-work implementing . Error function .
. function parameter accuracy relative
Number function
accuracy
1 2 3 4 5 6 7
Learning 1 0,078
function of 2 0,060
1 Gradient descent gradient Mean-square
method descent with error 0,075
account of the 3 0,086
moments
1 2 3 4 5 6 7
Gradient  descent Lea“?mg L 0,790
. function of Mean-square 2 0,061
2 method with .
account  of  the gradient error 0,312
descent 3 0,086
moments
Learning 1 0,801
function of Mean-square 2 0,062
Levenberg- . :
3 Marquardt method gradient error 0,316
q descent 3 0,086

In addition, a radial-basic neural network
which structure is shown at fig.4 was built up as a
result of the research.

The parameters of the input P and target

values T arrays, as well as GOAL (network
tolerated mean-square error) and SPREAD
parameters (the parameter of interference) were
used as the input data for the radial-basic networks,
while radial-basic network parameters were used
as output data. SPREAD parameter of interference
was taken to be bigger than a partition step of the
learning sequence interval, but smaller than the
interval itself, that is equal to 0.1. GOAL
parameter was chosen to be equal to 0. While
architecturing of the radial-basic network with a
zero error, the number of neurons of a radial-basic
layer is equal to the number of input values.
Weight and bias of the radial-basic network are set
in such a way that its outputs are accurately equal
to the targets. Relative accuracies of the data fitting
were determined as a result of networks
forecasting by means of a testing data selection.
The respective parameters of the network with a
minimum relative accuracy for acetic acid
synthesis unit are given in tab. 2.

If we compare the relative accuracies of
feed-forward neural networks to those of a radial-
basic network, we can see that the minimum
relative accuracy is insured by the radial-basic
neural network, that is one of the networks has an

advantage before another in solution of the
management problem. There’re much more
neurons in the radial-basic networks than a
compared network with feed forward signal and
sigmoid activation functions at a buried layer has.
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Fig. 4. Radial-basic network structure

Table 2. Radial-basic neural network parameters

Interference Mean- Output Relative Average
square relative
parameter parameter | accuracy
error accuracy
1 0,025
1.0 0 2 0,002 | 0,016
3 0,020
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CONCLUSIONS

To create control system with the usage of
the neuron networks at the acetic acid synthesis
unit start-up process it’s necessary to determine
neuron network structure, to hold a learning on the
basis of technological specifications and to do the
approbation of network performance with an
application of acetic acid plant equipment. Neural
network architecturing with a usage of GUI -
Neural Network Toolbox interface MATLAB 7.1.0
has proved the success of the neuron network
building up and learning process and its
satisfactory quality. That will let use neural
networks to manage the technological processes of
the acetic acid synthesis and proves the urgency of
the further researches of this area.
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HEWPOCETEBOE MOJIEJIMPOBAHUE
AJE1 YIIPABJIEHMA KOJIOHHOM CUHTE3A
YKCYCHOU KHCJIOTBI B ITEPHO/ ITYCKA

Onvea Hopxysn, Kanna Camoiinosa

AHHOTanus. B naHHOH craTbe NMpUBEACHBI PE3YJIbTATHI
UCCIIEZIOBAaHUII TOCTPOCHHS HMCKYCCTBEHHBIX HEHPOHHBIX
ceTeld, MCIONB3yeMbIX B aBTOMATH3MPOBAHHBIX CHCTEMax
YIpaBJICHHUS KOJIOHHOW CHHTE€3a YKCYCHOW KHCIOTBI C
nomompto GUI —wmHTepdeiica  Neural Network Toolbox
OPOrPaMMHOI0  CHMYJISITOpa Matlab.  TIpuBeneHsl
CTPYKTYpPHBIE CXEMBI TOI00HBIX CeTEH.

KnwouyeBbie cnoBa: HeHpoHHas ceTh C OOpaTHBIM
pacrpocTpaHeHHeM OIINOKH, paauanbHo-6a3ucHas
HEHpOHHAs ceTh, (PYHKIUS aKTUBALHH.



