PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
2017 | 26 | 4 |

Tytuł artykułu

Continuous fixed-bed column study and adsorption modeling:removal of arsenate and arsenite in aqueous solution by organic modified spent grains

Warianty tytułu

Języki publikacji

EN

Abstrakty

EN
The adsorption of arsenate (As(V)) and arsenite (As(III)) was conducted in a continuous fixed-bed column by using organic modified spent grains (OSGs). The column performances were evaluated by varying the influent flow rate (0.91, 1.36, and 2.72 ml/min) and arsenic ions initial concentration (1.0, 2.0, and 6.0 mg/l for As(V); 0.5, 1.0, and 3.0 mg/l for As(III)) in order to obtain experimental breakthrough curves. The maximum adsorption capacity was at 6.0 mg/l for As(V) and 3.0 mg/l for As(III) influent concentration and 1.36 ml/min flow rate. The Thomas model, Adams-Bohart model, and Yoon-Nelson kinetic models were used to analyze column performance. The value of rate constant for Thomas and Adams-Bohart models decreased with increase of influent concentration, but increased with increasing flow rate. The rate constant for the Yoon-Nelson model decreased with increases in both initial influent arsenic ions concentration and flow rate.

Słowa kluczowe

Wydawca

-

Rocznik

Tom

26

Numer

4

Opis fizyczny

p. 1847-1854,fig.,ref.

Twórcy

autor
  • Jiangxi Key Laboratory of Mining and Metallurgy Environmental Pollution Control, Jiangxi University of Science and Technology, Kejia Ave. 156, Ganzhou Jiangxi, 341000, P.R. China
autor
  • Jiangxi Key Laboratory of Mining and Metallurgy Environmental Pollution Control, Jiangxi University of Science and Technology, Kejia Ave. 156, Ganzhou Jiangxi, 341000, P.R. China
autor
  • Jiangxi Key Laboratory of Mining and Metallurgy Environmental Pollution Control, Jiangxi University of Science and Technology, Kejia Ave. 156, Ganzhou Jiangxi, 341000, P.R. China
autor
  • Jiangxi Key Laboratory of Mining and Metallurgy Environmental Pollution Control, Jiangxi University of Science and Technology, Kejia Ave. 156, Ganzhou Jiangxi, 341000, P.R. China
autor
  • Jiangxi Key Laboratory of Mining and Metallurgy Environmental Pollution Control, Jiangxi University of Science and Technology, Kejia Ave. 156, Ganzhou Jiangxi, 341000, P.R. China
autor
  • Jiangxi Key Laboratory of Mining and Metallurgy Environmental Pollution Control, Jiangxi University of Science and Technology, Kejia Ave. 156, Ganzhou Jiangxi, 341000, P.R. China

Bibliografia

  • 1. Qin C., Liu L., Han Y., Chen C., Lan Y. Mesoporous Magnetic Ferrum-Yttrium Binary Oxide: a Novel Adsorbent for Efficient Arsenic Removal from Aqueous Solution. Water, Air, & Soil Pollution 227, 337, 2016.
  • 2. Jiang B., Hu P., Zheng X., Zheng J., Tan M., Wu M., Xue Q. Rapid oxidation and immobilization of arsenic by contact glow discharge plasma in acidic solution. Chemosphere, 125, 220, 2015.
  • 3. Bhattacharya P., Welch A., Stollenwerk K., McLaughlin M., Bundschuh J., Panaullah G. Arsenic in the environment: biology and chemistry. Sci Total Environ 379, 109, 2007.
  • 4. Mohan D., Pittman C. Arsenic removal from water/wastewater using adsorbents-A critical review. J Hazard Mat 142, 1, 2007.
  • 5. Sharma V.K., Sohn M. Aquatic arsenic: toxicity, speciation, transformations, and remediation. A review. Environ Int 35, 743, 2009.
  • 6. Dastgiri S., Mosaferi M., Fiz M., Olfati N., Zolali S., Pouladi N., Azarfam P. Arsenic exposure, dermatological lesions, hypertension, and chromosomal abnormalities among people in a rural community of Northwest Iran. J Health Popul Nutr 28 (1), 1, 2010.
  • 7. Luther S., Borgfeld N., Kim J., Parsons J.P. Removal of arsenic from aqueous solution: a study of the effects of pH and interfering ions using iron oxide nanomaterials. Microchem J. 101, 30, 2012.
  • 8. IPCS, Environmental Health Criteria 224, Arsenic and Arsenic Compounds. 2nd ed., World Health Organization, Geneva, Switzerland, 2001.
  • 9. WHO: Guidelines for Drinking-Water Quality, third edition, Recommendations. Geneva: World Health Organization; 2011.
  • 10. Department of Health P. R. of China. Standards for Drinking Water Quality (GB 5749-2006).
  • 11. Imran A., Zeid A.O., Abdulrahman A., Mohd A., Tabrez K. Removal of arsenic species from water by batch and column operations on bagasse fly ash. Environ Sci Pollut Res. 21, 3218, 2014. DOI: 10.1007/s11356-013-2235-3.
  • 12. Wan W., Pepping T.J., Banerji T., Chaudhari S., Giammar D.E. Effects of water chemistry on arsenic removal from drinking water by electrocoagulation. Water Res. 45, 384, 2011.
  • 13. Pallier V., Cathalifaud G.F., Serpaud B., Bollinger J.C. Effect of organic matter on arsenic removal during coagulation/flocculation treatment. J. Colloid Interface Sci. 342, 26, 2010.
  • 14. Song S., Lopez V.A., Hernandez C.D.J., Peng C., Monroy F.M.G. Arsenic removal from high-arsenic water by enhanced coagulation with ferric ions and coarse calcite. Water Res. 40, 364, 2006.
  • 15. Altun M., Sahinkaya E., Durukan I., Bektas S., Komnitsas K. Arsenic removal in a sulfidogenic fixed-bed column bioreactor, Journal of Hazardous Materials 269, 31, 2014.
  • 16. Mondal P., Majumder C.B., Mohanty B. Treatment of arsenic contaminated water in a batch reactor by using Ralstonia eutropha MTCC 2487 and granular activated carbon. J. Hazard. Mater. 153, 588, 2008.
  • 17. Molino A., Erto A., Natale F.D., Donatelli A., Iovane P., Musmarra D. Gasification of Granulated Scrap Tires for the Production of Syngas and a Low-Cost Adsorbent for Cd(II) Removal from Wastewaters. Ind. Eng. Chem. Res., 52, 12154, 2013.
  • 18. Chen W., Parette R., Zou J., Cannon F.S., Dempsey B.A. Arsenic removal by iron-modified activated carbon. Water Res. 41, 1851, 2007. DOI:10.1016/j.watres.2007.01.052
  • 19. Ozer A., Ozer D. The adsorption of copper(II) ions on to dehydrated wheat bran (DWB): determination of the equilibrium and thermodynamic parameters. Process Biochem, 39, 2183, 2004.
  • 20. Rajfur M., Klos A., Waclawek M. Sorption of copper(II) ions in the biomass of alga Spirogyra sp. Bioelectrochemistry, 87, 65, 2012.
  • 21. Chen Y., Chai L., Nie J., Luo X., Wang D. The treatment of trace As (III) from water by modified spent grains. DESALIN WATER TREAT. 1, 2015. DOI: 10.1080/19443994.2013.855667.
  • 22. Low K.S., Lee C.K., Liew S.C. Sorption of cadmium and lead from aqueous solutions by spent grain. Process Biochem. 36, 59, 2000.
  • 23. Low K.S., Lee C.K., Low C.H. Sorption of Chromium(VI) by Spent Grains Under Batch Conditions. J. Appl. Polym. Sci., 82, 2128, 2001.
  • 24. Chai L.Y., Chen Y.N., Yang Z.H. Kinetics and thermodynamics of arsenate and arsenite biosorption by pretreated spent grains. Water Environ Res. 81 (9), 843, 2009.
  • 25. Weng S.P. Analysis of Fourier Transform Infrared Spectrometry, Chemical Industry Press, Beijing, 2009.
  • 26. Baral S.S., Das N., Ramulu T.S., Sahoo S.K., Das S.N., Chaudhury G.R. Removal of Cr (VI) by thermally activated weed Salvinia cucullata in a fixed-bed column. J. Hazard. Mater. 161 (2-3), 1427, 2009.
  • 27. Thomas H.G. Chromatography: a problem in kinetics, Ann. N.Y. Acad. Sci. 49, 161, 1948.
  • 28. Aksu Z., Gönen F. Biosorption of phenol by immobilized activated sludge in acontinuous packed bed: prediction of breakthrough curves, Process Biochem. 39, 599, 2004.
  • 29. Pilli S.R., Goud V.V., Mohanty K. Biosorption of Cr(VI) on immobilized Hydrillaverticillata in a continuous up-flow packed bed: prediction of kinetic parameters and breakthrough curves, Desalination Water Treat. 50 (1-3), 115, 2012.

Typ dokumentu

Bibliografia

Identyfikatory

Identyfikator YADDA

bwmeta1.element.agro-483abfed-6f30-4911-8613-e8dc3cf5997f
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.