PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników

Czasopismo

2013 | 58 | 4 |

Tytuł artykułu

Immune responses of B. malayi thioredoxin (TRX) and venom allergen homologue (VAH) chimeric multiple antigen for lymphatic filariasis

Warianty tytułu

Języki publikacji

EN

Abstrakty

EN
Although multiple vaccine strategy for lymphatic filariasis has provided tremendous hope, the choice of antigens used in combination has determined its success in the previous studies. Multiple antigens comprising key vaccine candidates from different life cycle stages would provide a promising strategy if the antigenic combination is chosen by careful screening. In order to analyze one such combination, we have used a chimeric construct carrying the well studied B. malayi antigens thioredoxin (BmTRX) and venom allergen homologue (BmVAH) as a fusion protein (TV) and evaluated its immune responses in mice model. The efficacy of fusion protein vaccine was explored in comparison with the single antigen vaccines and their cocktail. In mice, TV induced significantly high antibody titer of 1,28,000 compared to cocktail vaccine TRX+VAH (50,000) and single antigen vaccine TRX (16,000) or VAH (50,000). Furthermore, TV elicited higher level of cellular proliferative response together with elevated levels of IFN-γ, IL-4 and IL-5 indicating a Th1/Th2 balanced response. The isotype antibody profile showed significantly high level of IgG1 and IgG2b confirming the balanced response elicited by TV. Immunization with TV antigen induced high levels of both humoral and cellular immune responses compared to either cocktail or antigen given alone. The result suggests that TV is highly immunogenic in mice and hence the combination needs to be evaluated for its prophylactic potential.

Wydawca

-

Czasopismo

Rocznik

Tom

58

Numer

4

Opis fizyczny

p.468-477,fig.,ref.

Twórcy

autor
  • Centre for Biotechnology, Anna University, Chennai 600025, India
  • Centre for Biotechnology, Anna University, Chennai 600025, India
  • Centre for Biotechnology, Anna University, Chennai 600025, India
autor
  • Centre for Biotechnology, Anna University, Chennai 600025, India
autor
  • Centre for Biotechnology, Anna University, Chennai 600025, India

Bibliografia

  • Anand S.B., Gnanasekar M., Thangadurai M., Prabhu P.R., Kaliraj P., Ramaswamy K. 2007. Immune response studies with Wuchereria bancrofti vespid allergen homologue (WbVAH) in human lymphatic filariasis. Parasitology Research, 101, 981–988. DOI: 10.1007/s00436-007-0571-2.
  • Anand S.B., Kodumudi K.N., Reddy M.V., Kaliraj P. 2011. A combination of two Brugia malayi filarial vaccine candidate antigens (BmALT-2 and BmVAH) enhances immune responses and protection in jirds. Journal of Helminthology, 85, 442–452. DOI: 10.1017/S0022149X10000799.
  • Anand S.B., Murugan V., Prabhu P.R., Anandharaman V., Reddy M.V., Kaliraj P. 2008. Comparison of immunogenicity, protective efficacy of single and cocktail DNA vaccine of Brugia malayi abundant larval transcript (ALT-2) and thioredoxin peroxidase (TPX) in mice. Acta Tropica, 107, 106–112. DOI: 10.1016/j.actatropi ca.2008.04.018.
  • Babu B.V., Mishra S. 2008. Mass drug administration under the programme to eliminate lymphatic filariasis in Orissa, India: a mixed-methods study to identify factors associated with compliance and non-compliance. Transactions of the Royal Society of Tropical Medicine and Hygiene, 102, 1207–1213. DOI: 10.1016/j.trstmh.2008.05.023.
  • Babu S., Ganley L.M., Klei T.R., Shultz L.D., Rajan T.V. 2000. Role of gamma interferon and interleukin-4 in host defense against the human filarial parasite Brugia malayi. Infection and Immunity, 68, 3034–3035.
  • Babu S., Shultz L.D., Klei T.R., Rajan T.V. 1999. Immunity in experimental murine filariasis: roles of T and B cells revisited. Infection and Immunity, 67, 3166–3167.
  • Carvalho-Queiroz C., Cook R., Wang C.C., Correa-Oliveira R., Bailey N.A., Egilmez N.K. 2004. Cross-reactivity of Schistosoma mansoni cytosolic superoxide dismutase, a protective vaccine candidate, with host superoxide dismutase and identification of parasite-specific B epitopes. Infection and Immunity, 72, 2635–2647.
  • Chenthamarakshan V., Reddy M.V., Harinath B.C. 1995. Immuno prophylactic potential of a 120 kDa Brugia malayi adult antigen fraction, BmA-2, in lymphatic filariasis. Parasite Immunology, 17, 277–285.
  • Chiumiento L., Bruschi F. 2009. Enzymatic antioxidant systems in helminth parasites. Parasitology Research, 105, 593–603. DOI: 10.1007/s00436-009-1483-0.
  • Dakshinamoorthy G., Samykutty A.K., Munirathinam G., Reddy M.V., Kalyanasundaram R. 2012. Multivalent fusion protein vaccine for lymphatic filariasis. Vaccine, ? DOI: 10.1016/j.vaccine.2012.09.055.
  • Dissanayake S., Perler F.B., Xu M., Southworth M.W., Yee C.K., Wang S., Dreyer G., Watawana L., Kurniawan L., Fuhrman J.A. 1995. Differential recognition of microfilarial chitinase, a transmission-blocking vaccine candidate antigen, by sera from patients with Brugian and Bancroftian filariasis. American Journal of Tropical Medicine and Hygiene, 53, 289–294.
  • El-Setouhy M., Abd Elaziz K.M., Helmy H., Farid H.A., Kamal H.A., Ramzy R.M., Shannon W.D., Weil G.J. 2007. The effect of compliance on the impact of mass drug administration for elimination of lymphatic filariasis in Egypt. American Journal of Tropical Medicine and Hygiene, 77, 1069–1073.
  • Gnanasekar M., Rao K.V., He Y.X., Mishra P.K., Nutman T.B., Kaliraj P., Ramaswamy K. 2004. Novel phage display-based sub tractive screening to identify vaccine candidates of Brugia malayi. Infection and Immunity, 72, 4707–4715. DOI:.4707-4715.2004.
  • Gomez-Escobar N., Bennett C., Prieto-Lafuente L., Aebischer T., Blackburn C.C., Maizels R.M. 2005. Heterologous expression of the filarial nematode alt gene products reveals their potential to inhibit immune function. BMC Biology, 23, 3–8. DOI: 10.1186/1741-7007-3-8.
  • Gozar M.M., Price V.L., Kaslow D.C. 1998. Saccharomyces cerevisiae-secreted fusion proteins Pfs25 and Pfs28 elicit potent Plasmodium falciparum transmission-blocking antibodies in mice. Infection and Immunity, 66, 59–64.
  • Hager D.A., Burgess R.R. 1980. Elution of proteins from sodium dodecyl sulfate-polyacrylamide gels, removal of sodium dodecyl sulfate, and renaturation of enzymatic activity: results with sigma subunit of Escherichia coli RNA polymerase, wheat germ DNA topoisomerase, and other enzymes. Analytical Biochemistry, 109, 76–86.
  • Hawdon J.M., Jones B.F., Hoffman D.R., Hotez P.J. 1996. Cloning and characterization of Ancylostoma secreted protein. A novel protein associated with the transition to parasitism by infective hookworm larvae. Journal of Biological Chemistry, 271, 6672–6678.
  • Henkle-Duhrsen K., Kampkotter A. 2001. Antioxidant enzyme families in parasitic nematodes. Molecular and Biochemical Parasitology, 114, 129–142.
  • Hoerauf A., Satoguina J., Saeftel M., Specht S. 2005. Immuno-modulation by filarial nematodes. Parasite Immunology, 27, 417–429.
  • Horton J. 2009. The development of albendazole for lymphatic filariasis. Annals of Tropical Medicine and Parasitology, 103, 33–40. DOI: 10.1179/0003 49809 X12502035776595.
  • Hotez P.J. 2009. Mass drug administration and integrated control for the world’s high-prevalence neglected tropical diseases, 85, 659–664. DOI: 10.1038/clpt.2009.16.
  • Kalyanasundaram R., Balumuri P. 2011. Multivalent vaccine formulation with BmVAL-1 and BmALT-2 confer significant protection against challenge infections with Brugia malayi in mice and jirds. Research and Reports in Tropical Medicine, 2, 45–56. DOI: 10.2147/RRTM.S13679.
  • Kunchithapautham K., Padmavathi B., Narayanan R.B., Kaliraj P., Scott A.L. 2003. Thioredoxin from Brugia malayi: defining a 16-kilodalton class of thioredoxins from nematodes. Infection and Immunity, 71, 4119–4126.
  • Laemmli U.K. 1970. Cleavage of structural proteins during the assembly of the head of bacteriophage T4. Nature, 227, 680–685.
  • Lange A.M., Yutanawiboonchai W., Scott P., Abraham, D. 1994. IL-4-and IL-5-dependent protective immunity to Onchocerca volvulus infective larvae in BALB/cBYJ mice. Journal of Immunology, 153, 205–211.
  • Lawrence R.A. 2001. Immunity to filarial nematodes. Veterinary Parasitology, 100(1–2), 33–44.
  • LoVerde P.T., Carvalho-Queiroz C., Cook R. 2004. Vaccination with antioxidant enzymes confers protective immunity against challenge infection with Schistosoma mansoni. Memórias do Instituto Oswaldo Cruz, 99, 37–43. DOI: S0074-02762004000900007.
  • Madhumathi J., Prince P.R., Anugraha G., Kiran P., Rao D.N., Reddy M.V. Kaliraj P. 2010. Identification and characterization of nematode specific protective epitopes of Brugia malayi TRX towards development of synthetic vaccine construct for lymphatic filariasis. Vaccine, 28, 5038–5048.
  • Maizels R.M., Blaxter M.L., Scott A.L. 2001. Immunological genomics of Brugia malayi: filarial genes implicated in immune evasion and protective immunity. Parasite Immunology, 23, 327–344.
  • Mazumdar S., Mukherjee P., Yazdani S.S., Jain S.K., Mohmmed A., Chauhan V.S. 2010. Plasmodium falciparum merozoite surface protein 1 (MSP-1)-MSP-3 chimeric protein: immunogenicity determined with human-compatible adjuvants and induction of protective immune response. Infection and Immunity, 78, 872–883. DOI: 10.1128/IAI.00427-09.
  • Murray J., Gregory W.F., Gomez-Escobar N., Atmadja A.K., Maizels R.M. 2001. Expression and immune recognition of Brugia malayi VAL-1, a homologue of vespid venom allergens and Ancylostoma secreted proteins. Molecular Biochemical Parasitology, 118, 89–96.
  • Peters B., Sidney J., Bourne P., Bui H.H., Buus S., Doh G. 2005. The design and implementation of the immune epitope data base and analysis resource. Immunogenetics, 57, 326–336. DOI: 10.1007/s00251-005-0803-5.
  • Samykutty A., Dakshinamoorthy G., Kalyanasundaram R. 2010. Multivalent Vaccine for Lymphatic Filariasis. Procedia in Vaccinology, 3, 12–18. DOI: 10.1016/j.provac.2010.11.003.
  • Schwab A.E., Churcher T.S., Schwab A.J., Basanez M.G., Prichard R.K. 2007. An analysis of the population genetics of potential multi-drug resistance in Wuchereria bancrofti due to combination chemotherapy. Parasitology, 134, 1025–1040. DOI: 10.1017/S0031182007002363.
  • Tawe W., Pearlman E., Unnasch T.R., Lustigman S. 2000. Angiogenic activity of Onchocerca volvulus recombinant proteins similar to vespid venom antigen 5. Molecular Biochemical Parasitology, 109, 91–99.
  • Thirugnanam S., Pandiaraja P., Ramaswamy K., Murugan V., Gnanasekar M., Nandakumar K., Reddy M.V., Kaliraj P. 2007. Brugia malayi: comparison of protective immune responses induced by Bm-alt-2 DNA, recombinant Bm-ALT-2 protein and prime-boost vaccine regimens in a jird model. Experimental Parasitology, 116, 483–491. DOI: 10.1016/j.expp ar a.2007.02./017.
  • Towbin H., Staehelin T., Gordon J. 1979. Electrophoretic transfer of proteins from polyacrylamide gels to nitrocellulose sheets: procedure and some applications. Proceedings of the National Academy of Sciences, 76, 4350–4354.
  • Vanam U., Pandey V., Prabhu P.R., Dakshinamurthy G., Reddy M.V., Kaliraj P. 2009. Evaluation of immunoprophylactic efficacy of Brugia malayi transglutaminase (BmTGA) in single and multiple antigen vaccination with BmALT-2 and BmTPX for human lymphatic filariasis. American Journal of Tropical Medicine and Hygiene, 80, 319–324.
  • Vincent A.L., Sodeman W.A., Winters A. 1980. Development of Brugia pahangi in normal and nude mice. Journal of Parasitology, 66, 448.

Typ dokumentu

Bibliografia

Identyfikatory

Identyfikator YADDA

bwmeta1.element.agro-482148f0-14ae-4514-8e69-461017b7816e
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.