PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
2011 | 567 |

Tytuł artykułu

Różnorodność drobnoustrojów funkcją uwilgotnienia gleb

Warianty tytułu

EN
Microbial diversity as a function of soil moisture content

Języki publikacji

PL

Abstrakty

PL
Wykonano doświadczenie laboratoryjne, które miało na celu określenie wpływu stanu uwilgotnienia gleby na liczebność i różnorodność drobnoustrojów. Czynnikami zmiennymi były: 1) rodzaj utworu glebowego: piasek słabogliniasty (1 gleba), piasek gliniasty (2 gleby), glina piaszczysta (3 gleby), pył gliniasty (1 gleba); 2) wilgotność gleby: powietrznie sucha, 20%, 40% i 60% mpw; 3) czas inkubacji gleby w tygodniach: 4, 16. Stwierdzono, że poziom uwilgotnienia testowanych utworów glebowych wywierał istotny wpływ na różnorodność badanych drobnoustrojów. W większym zakresie zmieniał różnorodność grzybów i bakterii organotroficznych niż promieniowców. Średnie wyniki wyliczone dla poszczególnych grup drobnoustrojów wskazują, że różnorodność bakterii organotroficznych i grzybów była większa w glebach powietrznie suchych niż w glebach uwilgotnionych, natomiast - promieniowców odwrotnie, nieco większa w glebach uwilgotnionych w zakresie 20%-40% mpw niż w powietrznie suchych. Optymalną wilgotnością, abstrahując od różnorodności, dla rozwoju promieniowców okazała się wilgotność gleb na poziomie 40% mpw, natomiast dla bakterii - 20% w glebach lżejszych i 40% w glebach cięższych. Grzyby najliczniej występowały w pyle gliniastym uwilgotnionym na poziomie 20% mpw, w glinie piaszczystej o wilgotności 40% mpw, w piasku gliniastym o uwilgotnieniu 60% mpw i w piasku słabogliniastym - 40%-60% mpw.
EN
Laboratory experiment was conducted to determine the effect of soil moisture on microbial counts and diversity. The experimental variables were: 1) soil type: slightly loamy sand (1 soil type), loamy sand (2 soil types), sandy loam (3 soil types), silt loam (1 soil type); 2) soil moisture content: air-dried, 20%, 40%, 60% maximum water-holding capacity; 3) time of soil incubation (weeks): 4, 16. Soil moisture content had a significant effect on the diversity of microbial communities. The diversity of fungi and organotrophic bacteria was affected by soil moisture to a higher degree than the diversity of actinomycetes. On average, the diversity of organotrophic bacteria and fungi was higher in air-dried soils than in soils with higher moisture levels, whereas the diversity of actinomycetes was somewhat higher in soils with moisture content of 20-40% maximum water-holding capacity, than in air-dried soils. Apart from diversity, the optimum soil moisture content for the growth of actinomycetes was 40% maximum water-holding capacity, and for the growth of organotrophic bacteria - 20% and 40% maximum water-holding capacity in lighter and heavier soils, respectively. Fungi were present in greatest abundance in silt loam with moisture content of 20% maximum water-holding capacity, in sandy loam with moisture content of 40% maximum water-holding capacity, in loamy sand with moisture content of 60% maximum water-holding capacity, and in slightly loamy sand with moisture content of 40-60% maximum water-holding capacity.

Wydawca

-

Rocznik

Tom

567

Opis fizyczny

s.39-53,rys.,tab.,bibliogr.

Twórcy

autor
  • Katedra Mikrobiologii, Uniwersytet Warmińsko-Mazurski w Olsztynie, pl.Łódzki 3, 10-727 Olsztyn
  • Katedra Mikrobiologii, Uniwersytet Warmińsko-Mazurski w Olsztynie, pl.Łódzki 3, 10-727 Olsztyn
autor
  • Katedra Mikrobiologii, Uniwersytet Warmińsko-Mazurski w Olsztynie, pl.Łódzki 3, 10-727 Olsztyn

Bibliografia

  • Alexander M. 1973. Microrganisms and chemical pollution. Bioscience 23: 509-515.
  • Bell C.W., Acosta-Martinez V., McIntyre N.E., Cox S., Tissue D.T., Zak J.C. 2009. Linking microbial community structure and function to seasonal differences in soil moisture and temperature in a Chihuahuan desert grassland. Microb. Ecol. 58: 827-842.
  • Contant R.T., Dalla-Betta P., Klopatek C.C., Klopatek J.M. 2004. Controls on soil respiration in semiarid soils. Soil Biol. Biochem. 36: 945-951.
  • De Leij F.A.A.M., Whips J.M., Lynch J.M. 1993. The use of colony development for the characterization of bacterial communities in soil and on roots. Microb. Ecol. 27: 81-97.
  • Dendooven L., Duchateau L., Anderson J.M. 1996. Gaseous products of the denitrtification process as affected by the antecedent water regime of the soil. Soil Biol. Biochem. 28(2): 239-245.
  • Entry J.A., Mills D., Mathee K., Jayachandran K., Sojka R.E., Narasimhan G. 2008. Influence of irrigated agriculture on soil microbial diversity. Appl. Soil Ecol. 49: 146-154.
  • Gleeson D.B., Herrmann A.M., Livesley S.J., Murphy D.V 2008. Influence of water potential on nitrification and structure of nitrifying bacterial communities in semiarid soils. Appl. Soil Ecol. 40: 189-194.
  • Gordon H., Haygarth P.M., Bardgett R.D. 2008. Drying and rewetting effects on soil microbial community composition and nutrient leaching. Soil Biol. Biochem. 40: 302-311.
  • Hinojosa M.B., Carreira J.A., Garcia-Ruiz R., Dick R.P. 2004. Soil moisture pre-treatment effects on enzyme activities as indicators of heavy metal-contaminated and reclaimed soils. Soil Biol. Biochem. 36: 1559-1568.
  • Kang H., Freeman Ch. 1999. Phosphatase and arylsulphatase activities in wetland soils: annual variation and controlling factors. Soil Biol. Biochem. 31: 449-454.
  • Khalil M.I., Baggs E.M. 2005. CH₄ oxidation and N₂O emissions at varied soil waterfilled pore spaces and headspace CH₄ concentrations. Soil Biol. Biochem. 37: 1785-1794.
  • Kim J., Guo X., Park H. 2008a. Comparision study of the effects of temperature and free ammonia concetration on nitrification and nitrite accumulation. Proc. Biochem. 43: 154-160.
  • Kim S., Lee S., Freeman C., Fenner N., Kang H. 2008b. Comparative analysis of soil microbial communities and their responses to the short-term drought in bog, den, and riparian wetlands. Soil Biol. Biochem. 40: 2874-2880.
  • Krämer S., Green D.M. 2000. Acid and alkaline phosphatase dynamics and their relationship to soil microclimate in a semiarid woodland. Soil Biol. Biochem. 32: 179-188.
  • Liu Z., Fu B., Zheng X., Liu G. 2010. Plant biomass, soil water content and soil N: P ratio regulating soil microbial functional diversity in a temperature steppe: A regional scale study. Soil Biol. Biochem. 42: 445-450.
  • Martin J. 1950. Use of acid rose bengal and streptomycin in the plate method for estimating soil fungi. Soil Sci. 69: 215-233.
  • Papatheodorou E.M., Argyropoulou M.D., Stamou G.P. 2004. The effects of large- and small-scale differences in soil temperature and moisture on bacterial functional diversity and the community of bacterivorous nematodes. Appl. Soil Ecol. 25: 37-49.
  • Parkinson D., Gray F.R.G., Williams S.T. 1971. Methods for studying the ecology of soil microorganisms. Blackweel Scientific Publications Oxford and Einburg, IBP Handbook. 19: 128 ss.
  • Pascual I., Antolin M.C., Garcia C., Polo A., Sanchez-Diaz M. 2007. Effect of water deficit on microbial characteristics in soil amended with sewage sludge or inorganic fertilizer under laboratory conditions. Biores. Techn. 98: 29-37.
  • Sarathchandra S.U., Burch G., Cox N.R. 1997. Growth patterns of bacterial communities in the rhizoplane and rhizosphere of white clover (Trifolium repens L.) and perennial ryegrass (Lolium perenne L.) in long-term pasture. Appl. Soil Ecol. 6: 293-299.
  • Sardans J., Penuelas J., Ogaya R. 2008. Experimental drought reduced acid and alkaline phosphatase activity and increased organic extractable P in soil in a Quercus ilex Mediterranean forest. Europ. J. Soil Biol. 44: 509-520.
  • Schjonning P., Elmholt S., Munkholm L.J., Debosz K. 2002. Soil quality aspects of humid sandy loams as influenced by organic and conventional long-term management. Agricult. Ecos. Environ. 88: 195-214.
  • Silva C.C., Guido M.L., Ceballos J.M., Marsch R., Dendooven L. 2008. Production of carbon dioxide and nitrous oxide in alkaline saline soil of Texcoco at different water contents amended with urea: A laboratory study. Soil Biol. Biochem. 40: 1813-1822.
  • Singurindy O., Molodovskaya M., Richards B.K., Steenhuis T.S. 2009. Nitrous oxide emission at low temperatures from manure-amended soils under corn (Zea mays L.). Agricult. Ecos. Environ. 132: 74-81.
  • Sommerkorn. M. 2008. Micro-topographic patterns unravel controls of soil water and temperature on soil respiration in three Siberian tundra systems. Soil Biol. Biochem. 40: 1792-1802.
  • StatSoft, Inc. 2010. STATISTICA (data analysis software system), version 9.1. www.statsoft.com.
  • Unger I.M., Kennedy A.C., Muzika R. 2009. Flooding effects on soil microbial communities. Appl. Soil Ecol. 42: 1-8.
  • Yuan B., Li Z., Liu H., Gao M., Ziiang Y. 2007a. Microbial biomass and activity in salt affected soils under arid conditions. Appl. Soil Ecol. 35: 319-328.
  • Yuan B., Xu X., Li Z., Gao T., Gao M., Fan X., Deng J. 2007b. Microbial biomass and activity in alkalized magnesic soils under arid conditions. Soil Biol. Biochem. 39: 3004-3013.

Typ dokumentu

Bibliografia

Identyfikatory

Identyfikator YADDA

bwmeta1.element.agro-47a29a5c-bc24-496e-9b98-0cc162acaa9c
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.