PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
2019 | 28 | 3 |

Tytuł artykułu

Remediating polluted soils using nanotechnologies: environmental benefits and risks

Warianty tytułu

Języki publikacji

EN

Abstrakty

EN
Since engineering nanoparticles (ENP) have been developed for using in industry and human commodities, is common to find their wastes and by-products from industrial chemical reactions, and it is also possible to find incidental nanoparticles in the environment. Currently, the remediation of polluted soils using nanotechnologies has become an emerging area with a huge potential to improve the performance of traditional remediation technologies. However, environmental concerns have also emerged regarding human and environmental health when nanotechnologies are released to ecosystems. The goal of this manuscript is to highlight the environmental benefits and risks that arise when nanotechnologies are used to remediate polluted soils. We searched Web of Science and Scopus in order to get latest updated information and patents pertaining to developments in the field of nanotechnologies for decontaminating soils. It has been determined that soil nanoremediation has some advantages, but it also has some disadvantages related to the final disposal of nanoparticles, nanomaterials, or nanodevices. Will some nanotechnologies be our pitfall? Nanoparticle toxicity has to be assessed and the standardization of techniques should be set by scientists and decision-makers worldwide. Cutting-edge knowledge regarding the use of nanoparticles to decontaminate soils has to move forward, but environmental quality, human health, and social welfare should also be ensured.

Słowa kluczowe

Wydawca

-

Rocznik

Tom

28

Numer

3

Opis fizyczny

p.1013-1030,fig.,ref.

Twórcy

  • Transdisciplinary Doctoral Program in Scientific and Technological Development for Society, Cinvestav, Zacatenco, Mexico City, Mexico
  • Sustainability of Natural Resources and Energy Program, Cinvestav-Saltillo, Coahuila de Zaragoza, Mexico, Mexico
  • División de Ciencias e Ingenierías, Universidad de Guanajuato (UG) Campus Leon, Leon, Gto., Mexico
  • Instituto Politecnico Nacional, CIBA-IPN, Tepetitla de Lardizabal, Tlaxcala, Mexico
  • Academic Area of Agricultural and Forestry, Autonomous University of Hidalgo State, Tulancingo, Hidalgo. Mexico
  • Academic Area of Agricultural and Forestry, Autonomous University of Hidalgo State, Tulancingo, Hidalgo. Mexico
  • Instituto Politecnico Nacional, CIBA-IPN, Tepetitla de Lardizabal, Tlaxcala, Mexico

Bibliografia

  • 1. SEVIK H., CETIN M. Effects of water stress on seed germination for select landscape plants. Pol. J. Enviro. Stud. 24 (2), 689, 2015.
  • 2. CETIN M. Sustainability of urban coastal area management: A case study on Cide, J. Sustain. Forest. 35 (7), 527, 2016.
  • 3. CETIN M. Landscape Engineering, Protecting Soil, and Runoff Storm Water, In: Advances in Landscape Architecture-Environmental Sciences, OZYAVUZ M. (Ed.). InTech, 697-722, 2013.
  • 4. YIGIT N., SEVIK H., CETIN M., GUL L. Clonal variation in chemical wood characteristics in Hanönü (Kastamonu) Günlüburun black pine (Pinus nigra Arnold. subsp. pallasiana (Lamb.) Holmboe) seed orchard. J. Sustain. Forest. 35 (7), 515, 2016.
  • 5. YIGIT N., SEVIK H., CETIN M., KAYA N. Determination of the effect of drought stress on the seed germination in some plant species. In: Water stress in plants, Eds: ISMAIL M.D., MOFIZUR R., ZINNAT A. B., HIROSHI H. (Eds), Intech Open, 43-62. 2016.
  • 6. GUNEY K., CETIN M., SEVIK H., GUNEY K.B. Influence of germination percentage and morphological properties of some hormones practice on Lilium martagon L. seeds. Oxid. Comm. 39 (1-II), 466, 2016.
  • 7. CETIN M., SEVIK H. Measuring the impact of selected plants on indoor CO₂ concentrations. Pol. J. Enviro. Stud. 25 (3), 973, 2016.
  • 8. GUNEY K., CETIN M., GUNEY K.B. MELEKOGLU A. The effects of some hormone applications on Lilium martagon L. germination and morpholgical characters. Pol. J. Enviro. Stud. 26 (6), 2533, 2017.
  • 9. CETIN M., SEVIK H., SAAT A. Indoor air quality: the samples of safranbolu bulak Mencilis cave. Fresenius Environ. Bull. 26(10): 5965, 2017.
  • 10. SEVIK H., CETIN M., KAPUCU, O. Effect of light on young structures of turkish fir (Abies nordmanniana subsp. bornmulleriana). Oxid. Comm. 39 (1-II), 485, 2016.
  • 11. SEVIK H., AHMAIDA E.A., CETIN M. Change of the air quality in the urban open and green spaces: kastamonu sample. In: Ecology, planning and design. Eds: KOLEVA I., ULKU D.Y., LAHCEN B. (Eds.) University Press, 409-422, 2017.
  • 12. RABOT E., WIESMEIER M., SCHLUTER S., VOGEL H.J. Soil structure as an indicator of soil functions: A review. Geoderma. 314, 122, 2018.
  • 13. LI G., SUN G.X., REN Y., LUO X.S., ZHU Y.G. Urban soil and human health: a review. Eur. J. Soil Sci. 69 (1), 196, 2018.
  • 14. ABDALLA M., HASTING A., CHADWICK D.R., JONES D.L., EVANS C.D., JONES M.B., REES R.M., SMITH P. Critical review of the impacts of grazing intensity on soil organic carbon storage and other soil quality indicators in extensively managed grasslands. Agric. Ecosyst. Environ. 253, 62, 2018.
  • 15. BIZO M.L., LEVEI E.A., KOTHE E., SENILA M., MODOI C.O., OZUNU A. Chemical assessment of soil quality for ecological remediation strategies. Carpath. J. Earth Environ. Sci. 10 (4), 195, 2015.
  • 16. DOUCETTE W.J., SHUNTHIRASINGHAM C., DETTENMAIER E.M., ZALESKI R.T., FANTKE P., ARNOT J.A. A review of measured bioaccumulation data on terrestrial plants for organic chemicals: metrics, variability, and the need for standardized measurement protocols. Environ. Toxicol. Chem. 37 (1), 21, 2018.
  • 17. DAS P., BARUA S., SARKAR S., KARAK N., BHATTACHAYYA P., RAZA N., KIM K.H., BHATTACHARYA S.S. Plant extract-mediated green silver nanoparticles: Efficacy as soil conditioner and plant growth promoter. J. Hazard. Matter. 346, 62, 2018.
  • 18. LU S.G., ZHANG X., XUE Y.F. Application of calcium peroxide in water and soil treatment: A review. J. Hazard. Matter. 337, 163, 2017.
  • 19. GOUDA S., KERRY R.G., DAS G., PARAMITHIOTIS S., SHIN H.S., PATRA J.K. Revitalization of plant growth promoting rhizobacteria for sustainable development in agriculture. Microbiol. Res. 206, 131, 2018.
  • 20. LEON-SILVA S., FERNÁNDEZ-LUQUEÑO F., LOPEZ-VALDEZ F. Silver nanoparticles (AgNP) in the environment: a review of potential risks on human and environmental health. Water Air Soil Poll. 227, Article number 306, 2016.
  • 21. VANCE M.E., KUIKEN T., VEJERANO E.P., MCGINNIS S.P., HOCHELLA M.F., REJESKI D., HULL M.S. Nanotechnology in the real world: Redeveloping the nanomaterial consumer products inventory. Beilstein J. Nanotechnol. 6, 1769, 2015.
  • 22. FERNÁNDEZ-LUQUEÑO F., LÓPEZ-VALDEZ F., VALERIO-RODRÍGUEZ M.F., PARIONA N., HERNÁNDEZ-LÓPEZ J.L., GARCÍA-ORTÍZ I., LÓPEZ-BALTAZAR J., VEGA-SÁNCHEZ M.C., ESPINOZA-ZAPATA R., ACOSTA-GALLEGOS J.A. In: Fertilizers: Components, uses in agriculture and environmental impacts; LÓPEZ-VALDEZ F., FERNÁNDEZ-LUQUEÑO F. Eds.; Nova. USA. 211, 2014.
  • 23. FERNÁNDEZ-LUQUEÑO F., LOPEZ-VALDEZ F., DENDOOVEN L., LUNA-SUAREZ S., CEBALLOS-RAMIREZ J.M. Why wastewater sludge stimulates and accelerates removal of PAHs in polluted soils? Appl. Soil Ecol. 101, 1, 2016.
  • 24. FERNÁNDEZ-LUQUEÑO F., LOPEZ-VALDEZ F., SARABIA-CASTILLO C.R., GARCÍA-MAYAGOITIA S., PEREZ-RIOS S.R. Bioremediation of polycyclic aromatic hydrocarbons-polluted soils at laboratory and field scale: a review of the literature on plants and microorganisms. In: Enhancing cleanup of environmental pollutants Vol. 1: Biological approaches, ANJUM N.A., GILL S.S., TUTEJA N. (Eds.), Springer. Switzerland, 43, 2017.
  • 25. FERNÁNDEZ-LUQUEÑO F., LOPEZ-VALDEZ F., PÉREZ-MORALES C., GARCÍA-MAYAGOITIA S., SARABIA-CASTILLO C.R., PEREZ-RIOS S.R. Enhancing decontamination of PAHs-polluted soils: role of organic and mineral amendments. In: Enhancing cleanup of environmental pollutants Vol. 2: Non-biological approaches, ANJUM N.A., GILL S.S., TUTEJA N. (Eds.), Springer. Switzerland, 339, 2017.
  • 26. Gillies G., Mackenzie K., Kopinke F.D., Georgi A. Fluorescence labelling as tool for zeolite particle tracking in nanoremediation approaches. Sci. Total Environ. 550, 820, 2016.
  • 27. Gil-Diaz M., Diez-Pascual S., Gonzalez A., Alonso J., Rodriguez-Valdez E., Gallego J.R., Lobo M.C. A nanoremediation strategy for the recovery of an As-polluted soil. Chemosphere. 149, 137, 2016.
  • 28. Schivvy A., Maes H.M., Koske D., Flecken M., Schmidt K.R., Schell H., Tiehm A., Kamptner A., Thummler S., Stanjek H., Heggen M., Dunin-Borkowski R.E., Braun J.M., Schaffer A., Hollert H. The ecotoxic potential of a new zero-valent iron nanomaterial, designed for the elimination of halogenated pollutants, and its effect on reductive dechlorinating microbial communities. Environ. Pollut. 216, 419, 2016.
  • 29. Nathanail C.P., Gillett A., McCaffrey C., Nathanail J., Ogden R. A preliminary risk assessment protocol for renegade nanoparticles deployed during nanoremediation. Remed. J. 26, 95, 2016.
  • 30. Theng B.K., Yuan G. Nanoparticles in the soil environment. Elements, 4, 395, 2008.
  • 31. Xu C., Peng C., Sun L., Zhang S., Huang H., Chen Y., Shi J. Distinctive effects of TiO₂ and CuO nanoparticles on soil microbes and their community structures in flooded paddy soil. Soil Biol. & Biochem. 86, 24, 2015.
  • 32. He S., Feng Y., Ni J., Sun Y., Xue L., Feng Y., Yu Y., Lin X., Yang L. Different responses of soil microbial metabolic activity to silver and iron oxide nanoparticles. Chemosphere, 147, 195, 2016.
  • 33. Bawa R., Bawa S.R., Maebius S.B., Flynn T., Wei C. Protecting new ideas and inventions in nanomedicine with patents. Nanomed-Nanotechnol, 1, 150, 2005.
  • 34. Keller A.A., McFerran S., Lazareva A., Suh S. Global life cycle releases of engineered nanomaterials. J. Nanopart. Res., 15, 1, 2013.
  • 35. Parisi C., Vigani M., Rodríguez-Cerezo E. Agricultural Nanotechnologies: What are the current possibilities? Nano Today, 10, 124, 2015.
  • 36. FAO/WHO. State of the Art on the Initiatives and Activities Relevant to Risk Assessment and Risk Management of Nanotechnologies in the Food and Agriculture Sectors. Technical Paper, FAO and WHO, Rome. 2013. Available online at: http://www.fao.org/docrep/018/i3281e/i3281e.pdf (Accessed May 8, 2017)
  • 37. Aragay G., Pino F., Merkoci A. Nanomaterials for sensing and destroying pesticides. Chem. Rev. 112, 5317, 2012.
  • 38. Yao J., Yang M., Duan Y. Chemistry, biology, and medicine of fluorescent nanomaterials and related systems: new insights into biosensing, bioimaging, genomics, diagnostics, and therapy. Chem. Rev. 114, 6130, 2014.
  • 39. Chen H., Yada R. Nanotechnologies in agriculture: New tools for sustainable development. Trends Food Sci. Tech. 22, 585, 2011.
  • 40. Corradini E., De Moura M.R., Mattoso L.H.C. A preliminary study of the incorparation of NPK fertilizer into chitosan nanoparticles. Express Polym. Lett. 4, 509, 2010.
  • 41. DeRosa M.C., Monreal C., Schnitzer M., Walsh R., Sultan Y. Nanotechnology in fertilizers. Nat. Nanotechnol. 5, 91, 2010.
  • 42. Grillo R., de Melo N.F., de Lima R., Lourenço R.W., Rosa A.H., Fraceto L.F. Characterization of atrazine-loaded biodegradable poly (hydroxybutyrate-co-hydroxyvalerate) microspheres. J. Polym. Environ. 18, 26, 2010.
  • 43. Grillo R., dos Santos N.Z.P., Maruyama C.R., Rosa A.H., de Lima R., Fraceto L.F. Poly (ε-caprolactone) nanocapsules as carrier systems for herbicides: Physico-chemical characterization and genotoxicity evaluation. J. Hazard. Mater. 231, 1, 2012.
  • 44. Goldwasser Y., Eizenberg H., Golan S., Kleifeld Y. Control of Orobanche crenata and Orobanche aegyptiaca in parsley. Crop Prot. 22, 295, 2003.
  • 45. Mishra S., Singh H.B. Biosynthesized silver nanoparticles as a nanoweapon against phytopathogens: exploring their scope and potential in agriculture. Appl. Microbiol. Biotechnol. 99, 1097, 2015.
  • 46. Nuruzzaman M., Rahman M.M., Liu Y., Naidu R. Nanoencapsulation, nano-guard for pesticides: a new window for safe application. J. Agric. Food Chem. 64, 1447, 2016.
  • 47. Peteu S.F., Oancea F., Sicuia O.A., Constantinescu F., Dinu S. Responsive polymers for crop protection. Polymers, 2, 229, 2010.
  • 48. Mukhopadhyay S.S. Nanotechnology in agriculture: prospects and constraints. Nanotechnol. Sci. Appl. 7, 63, 2014.
  • 49. Dasgupta N., Ranjan S., Mundekkad D., Ramalingam C., Shanker R., Kumar A. Nanotechnology in agro-food: from field to plate. Food Res. Int. 69, 381, 2015.
  • 50. Johnston C.T. Probing the nanoscale architecture of clay minerals. Clay Miner. 45, 245, 2010.
  • 51. Bin Hussein M.Z., Zainal Z., Yahaya A.H., Foo D.W.V. Controlled release of a plant growth regulator, α-naphthaleneacetate from the lamella of Zn-Al-layered double hydroxide nanocomposite. J. Control Release. 82, 417, 2002.
  • 52. Kottegoda N., Munaweera I., Madusanka N., Karunaratne V. A green slow-release fertilizer composition based on urea-modified hydroxyapatite nanoparticles encapsulated wood. Curr. Sci. 101, 73, 2011.
  • 53. Jinghua G. Synchrotron radiation, soft-X-ray spectroscopy and nanomaterials. Int. J. Nanotechnol. 1, 193, 2004.
  • 54. Zhang F., Wan R., Xiao Q., Wang Y., Zhang J. Effects of slow/controlled-release fertilizer cemented and coated by nano-materials on biology. II. Effects of slow/controlled-release fertilizer cemented and coated by nano-materials on plants. Nanoscience, 11, 18, 2006.
  • 55. El Salmawi K.M. Application of polyvinyl alcohol (PVA)/carboxymethyl cellulose (CMC) hydrogel produced by conventional crosslinking or by freezing and thawing. J. Macromol. Sci. A. 44, 619, 2007.
  • 56. Sekhon B.S. Nanotechnology in agri-food production: an overview. Nanotechnol. Sci. Appl. 7, Article number 31, 2014.
  • 57. Jatav G.K., Mukhopadhyay R. Characterization of swelling behavior of anoclay composite. Int. J. Innov. Res. Sci. Eng. Technol. 2, 1560, 2013.
  • 58. Mahfoudhi N., Boufi S. Poly (acrylic acid-co-acrylamide)/cellulose nanofibrils nanocomposite hydrogels: effects of CNFs content on the hydrogel properties. Cellulose, 23, 3691, 2016.
  • 59. Kottegoda N., Munaweera I., Samaranayake L., Gunasekara S., De Alwis A., Karunaratne V., Madusanka A.N. U.S. Patent No. 8,617,284. Washington, DC: U.S. Patent and Trademark Office. 2013.
  • 60. Liu R., Lal R. Potentials of engineered nanoparticles as fertilizers for increasing agronomic productions. Sci. Total Environ. 514, 131, 2015.
  • 61. Li Z.Z., Chen J.F., Liu F., Liu A.Q., Wang Q., Sun H.Y., Wen L.X. Study of UV‐shielding properties of novel porous hollow silica nanoparticle carriers for avermectin. Pest Manag. Sci. 63, 241, 2007.
  • 62. Khot L.R., Sankaran S., Maja J.M., Ehsani R., Schuster E.W. Applications of nanomaterials in agricultural production and crop protection: a review. Crop Prot. 35, 64, 2012.
  • 63. Zhao R., Torley P., Halley P.J. Emerging biodegradable materials: starch-and protein-based bio-nanocomposites. J. Mater. Sci. 43, 3058, 2008.
  • 64. Lehmann J., Joseph S. Biochar for environmental management: Science, technology, and implementation. London. Taylor & Francis. New York, 2015.
  • 65. Peterson S.C., Jackson M.A., Appell M. Advances in applied nanotechnology for agriculture Park B. and Appell. Med. Washington, DC: American Chemical Society. 2013.
  • 66. Aragay G., Pons J., Ros J., Merkoçi A. Aminopyrazole-based ligand induces gold nanoparticle formation and remains available for heavy metal ions sensing. A simple “mix and detect” approach. Langmuir, 26, 10165, 2010.
  • 67. Kreyling W.G., Semmler-Behnke M., Chaudhry Q. A complementary definition of nanomaterial. Nano Today, 5, 165, 2010.
  • 68. Arivalagan K., Ravichandran S., Rangasamy K., Karthikeyan E. Nanomaterials and its potential applications. Int. J. Chem. Tech. Res. 3, 534, 2011.
  • 69. Aiken G.R., Hsu-Kim H., Ryan J.N. Influence of dissolved organic matter on the environmental fate of metals, nanoparticles, and colloids. Environ. Sci Technol. 45, 3196, 2011.
  • 70. Petersen E.J., Zhang L., Mattison N.T., O’Carroll D.M., Whelton A.J., Uddin N., Chen K.L. Potential release pathways, environmental fate, and ecological risks of carbon nanotubes. Environ. Sci. Technol. 45, 9837, 2011.
  • 71. Murr L.E., Garza K.M., Soto K.F., Carrasco A., Powell T.G., Ramirez D.A., Venzor J. Cytotoxicity assessment of some carbon nanotubes and related carbon nanoparticle aggregates and the implications for anthropogenic carbon nanotube aggregates in the environment. Int. J. Environ. Res. Public Health. 2, 31, 2005.
  • 72. Zosky G.R., Boylen C.E., Wong R.S., Smirk M.N., Gutiérrez L., Woodward R.C., Cook A. Variability and consistency in lung inflammatory responses to particles with a geogenic origin. Respirology, 19, 58, 2014.
  • 73. Ribeiro J., Flores D., Ward C.R., Silva L.F. Identification of nanominerals and nanoparticles in burning coal waste piles from Portugal. Sci. Total Environ. 408, 6032, 2010.
  • 74. Kumar P., Pirjola L., Ketzel M., Harrison R.M. Nanoparticle emissions from 11 non-vehicle exhaust sources - A review. Atmos. Environ. 67, 252, 2013.
  • 75. Nguyen P.K., Lee K.H., Moon J., Kim S.I., Ahn K.A., Chen L.H., Berkowitz A.E. Spark erosion: a high production rate method for producing Bi0. 5Sb1. 5Te3 nanoparticles with enhanced thermoelectric performance. Nanotechnology, 23, Article number 415604, 2012.
  • 76. US-EPA. Nanotechnology and Nanomaterials Research. Available on line at: www.epa.gov/nanoscience/ (Accessed October 30, 2016). 2012.
  • 77. Brar S.K., Verma M., Tyagi R.D., Surampalli R.Y. Engineered nanoparticles in wastewater and wastewater sludge--evidence and impacts. Waste Manag. 30, 504, 2010.
  • 78. Mueller N.C., Nowack B. Exposure modeling of engineered nanoparticles in the environment. Environ. Sci. Technol. 42, 4447, 2008.
  • 79. Nowack B., Mueller N.C., Krug H.F., Wick P. How to consider engineered nanomaterials in major accident regulations? Env. Sci. Eur. 26, 1, 2014.
  • 80. Elsaesser A., Howard C.V. Toxicology of nanoparticles. Adv. Drug Deliv. Rev. 64, 129, 2012.
  • 81. Biswas P., Wu C.Y. Nanoparticles and the environment. J. Air Waste Manage Assoc. 55, 708, 2005.
  • 82. Ahamed M., Alsalhi M.S., Siddiqui M.K.J. Silver nanoparticle applications and human health. Clin. Chim. Acta, 411, 1841, 2010.
  • 83. Lungu M., Neculae A., Bunoiu M., Biris C. Nanoparticles’ Promises and Risks. Ed Springer International Publishing Switzerland. 2015.
  • 84. Hochella M.F., Lower S.K., Maurice P.A., Penn R.L., Sahai N., Sparks D.L., Twining B.S. Nanominerals, mineral nanoparticles, and earth systems. Science, 319, 1631, 2008.
  • 85. Domingos R.F., Tufenkji N., Wilkinson K.J. Aggregation of titanium dioxide nanoparticles: role of a fulvic acid. Environ. Sci. Technol. 43, 1282, 2009.
  • 86. Six J., Bossuyt H., Degryze S., Denef K. A history of research on the link between (micro) aggregates, soil biota, and soil organic matter dynamics. Soil Tillage Res. 79, 7, 2004.
  • 87. Wu C.Y., Zhuang L., Zhou S.G., Yuan Y., Yuan T., Li F.B. Humic substance‐mediated reduction of iron (III) oxides and degradation of 2, 4‐D by an alkaliphilic bacterium, Corynebacterium humireducens MFC‐5. Microb. Biotechnol. 6, 141, 2013.
  • 88. Senesi N. Binding mechanisms of pesticides to soil humic substances. Sci. Total Environ. 123, 63, 1992.
  • 89. De Morais J.L., Zamora P.P. Use of advanced oxidation processes to improve the biodegradability of mature landfill leachates. J. Hazard. Mater. 123, 181, 2005.
  • 90. Guerard J.J., Miller P.L., Trouts T.D., Chin Y.P. The role of fulvic acid composition in the photosensitized degradation of aquatic contaminants. Aquat. Sci. 71, 160, 2009.
  • 91. Navarro E., Baun A., Behra R., Hartmann N.B., Filser J., Miao A.J., Sigg L. Environmental behavior and ecotoxicity of engineered nanoparticles to algae, plants, and fungi. Ecotoxicology, 17, 372, 2008.
  • 92. Shi Z., Shao L., Jones T.P., Lu S. Microscopy and mineralogy of airborne particles collected during severe dust storm episodes in Beijing, China. J. Geophys. Res. Atmos. 110, Article number D01303. 2005.
  • 93. Bakshi S., He Z.L., Harris W.G. Natural nanoparticles: implications for environment and human health. Crit. Rev. Env. Sci. Technol. 45, 861, 2015.
  • 94. Moharrer S., Mohammadi B., Gharamohammadi R.A., Yargoli M. Biological synthesis of silver nanoparticles by Aspergillus flavus, isolated from soil of Ahar copper mine. Indian J. Sci. Technol. 5, 2443, 2012.
  • 95. Glover R.D., Miller J.M., Hutchison J.E. Generation of metal nanoparticles from silver and copper objects: nanoparticle dynamics on surfaces and potential sources of nanoparticles in the environment. ACS Nano, 5, 8950, 2011.
  • 96. Ge Y., Schimel J.P., Holden P.A. Evidence for negative effects of TiO₂ and ZnO nanoparticles on soil bacterial communities. Environ. Sci. Technol. 45, 1659, 2011.
  • 97. Kokura S., Handa O., Takagi T., Ishikawa T., Naito Y., Yoshikawa T. Silver nanoparticles as a safe preservative for use in cosmetics. Nanomed-Nanotechnol. 6, 570, 2010.
  • 98. Stevens P.D., Li G., Fan J., Yen M., Gao Y. Recycling of homogeneous Pd catalysts using superparamagnetic nanoparticles as novel soluble supports for Suzuki, Heck, and Sonogashira cross-coupling reactions. Chem. Commun. 35, 4435, 2005.
  • 99. Pankhurst Q.A., Connolly J., Jones S.K., Dobson J.J. Applications of magnetic nanoparticles in biomedicine. J. Phys. D. Appl. Phys. 36, Article number R167, 2003.
  • 100.Cho K., Wang X.U., Nie S., Shin D.M. Therapeutic nanoparticles for drug delivery in cancer. Clin. Cancer Res. 14, 1310, 2008.
  • 101. Zhang M., He F., Zhao D., Hao X. Degradation of soil-sorbed trichloroethylene by stabilized zero valent iron nanoparticles: effects of sorption, surfactants, and natural organic matter. Water Res. 45, 2401, 2011.
  • 102.Dankovich T.A., Gray D.G. Bactericidal paper impregnated with silver nanoparticles for point-of-use water treatment. Environ. Sci. Technol. 45, 1992, 2011.
  • 103.Guo K., Li Y., Yang J., Zou Z., Xue X., Li X., Yang H. Nanosized Mn–Ru binary oxides as effective bifunctional cathode electrocatalysts for rechargeable Li-O₂ batteries. J. Mater. Chem. A. 2, 1509, 2014.
  • 104.Guo J. Synchrotron radiation, soft-X-ray spectroscopy and nanomaterials. Int. J. Nanotechnol. 1, 193, 2004.
  • 105.Chatterjee R. The challenge of regulating nanomaterials. Environ. Sci. Technol. 42, 339, 2008.
  • 106.Rai M., Yadav A., Gade A. Silver nanoparticles as a new generation of antimicrobials. Biotechnol. Adv. 27, 76, 2009.
  • 107.Ju-Nam Y., Lead J.R. Manufactured nanoparticles: an overview of their chemistry, interactions and potential environmental implications. Sci. Total Environ. 400, 396, 2008.
  • 108.Bowman D.M., Hodge G.A. A small matter of regulation: an international review of nanotechnology regulation. Columbia Sci. Technol. Law Rev. 8, Article number 1, 2007.
  • 109.Maynard A.D., Aitken R.J., Butz T., Colvin V., Donaldson K., Oberdörster G., Ti S.S. Safe handling of nanotechnology. Nature, 444, 267, 2006.
  • 110. Kannan S., Gariepy Y., Raghavan V. Optimization of enzyme hydrolysis of seafood waste for microwave hydrothermal. Energy Fuels, 29, 8006, 2015.
  • 111. Berube D.M., Searson E.M., Morton T.S., Cummings C.L. Project on emerging nanotechnologies. Consumer product inventory evaluated. Nanotech, Law & Business, 7, 152, 2010.
  • 112. Som C., Berges M., Chaudhry Q., Dusinska M., Fernandes T.F., Olsen S.I., Nowack B. The importance of life cycle concepts for the development of safe nanoproducts. Toxicology, 269, 160, 2010.
  • 113. Hischier R., Walser T. Life cycle assessment of engineered nanomaterials: state of the art and strategies to overcome existing gaps. Sci Total Environ. 425, 271, 2012.
  • 114. Machado S., Pinto S.L., Grosso J.P., Nouws H.P.A., Albergaria J.T., Delerue-Matos C. Green production of zero-valent iron nanoparticles using tree leaf extracts. Sci. Total Environ. 445, 1, 2013.
  • 115. Karn B., Kuiken T., Otto M. Nanotechnology and insitu remediation: a review of the benefits and potential risks. Ciência & Saúde Coletiva, 16, 165, 2011.
  • 116. Roehl K.E., Meggyes T., Simon F.G., Stewart D.I. Behaviour of uranium in elemental iron and hydroxyapatite reactive barriers: column experiments. Eds. Elsevier. New York. 2005.
  • 117. Shih Y.H., Tai Y.T. Reaction of decabrominated diphenyl ether by zerovalent iron nanoparticles. Chemosphere, 78, 1200, 2010.
  • 118. Zhu B.W., Lim T.T., Feng J. Reductive dechlorination of 1, 2, 4-trichlorobenzene with palladized nanoscale Fe0 particles supported on chitosan and silica. Chemosphere, 65, 1137, 2006.
  • 119. Liang F., Fan J., Guo Y., Fan M., Wang J., Yang H. Reduction of nitrite by ultrasound-dispersed nanoscale zero-valent iron particles. Ind. Eng. Chem. Res. 47, 8550, 2008.
  • 120.Giasuddin A.B., Kanel S.R., Choi H. Adsorption of humic acid onto nanoscale zerovalent iron and its effect on arsenic removal. Environ. Sci. Technol. 41, 2022, 2007.
  • 121. Elliott D.W., Lien H.L., Zhang W.X. Degradation of lindane by zero-valent iron nanoparticles. J. Environ. Eng. 135, 317, 2009.
  • 122.Shu H.Y., Chang M.C., Yu H.H., Chen W.H. Reduction of an azo dye Acid Black 24 solution using synthesized nanoscale zerovalent iron particles. J. Colloid Interface Sci. 314, 89, 2007.
  • 123. Machado S., Pacheco J.G., Nouws H.P.A., Albergaria J.T., Delerue-Matos C. Characterization of green zero-valent iron nanoparticles produced with tree leaf extracts. Sci. Total Environ. 533, 76, 2015.
  • 124. Shi L.N., Zhang X., Chen Z.L. Removal of chromium (VI) from wastewater using bentonite-supported nanoscale zero-valent iron. Water Res. 45, 886, 2011.
  • 125. Trujillo-Reyes J., Peralta-Videa J.R., Gardea-Torresdey J.L. Supported and unsupported nanomaterials for water and soil remediation: are they a useful solution for worldwide pollution? J. Hazard Mater. 280, 487, 2014.
  • 126. Wang S., Sun H., Ang H.M., Tadé M.O. Adsorptive remediation of environmental pollutants using novel graphene-based nanomaterials. Chem. Eng. J. 226, 336, 2013.
  • 127. Qiu X., Fang Z., Liang B., Gu F., Xu Z. Degradation of decabromodiphenyl ether by nano zero-valent iron immobilized in mesoporous silica microspheres. J. Hazard. Mater. 193, 70, 2011.
  • 128. Xie Y., Cheng W., Tsang P.E., Fang Z. Remediation and phytotoxicity of decabromodiphenyl ether contaminated soil by zero valent iron nanoparticles immobilized in mesoporous silica microspheres. J. Environ. Manag. 166, 478, 2016.
  • 129. Su H., Fang Z., Tsang P.E., Zheng L., Cheng W., Fang J., Zhao D. Remediation of hexavalent chromium contaminated soil by biochar-supported zero-valent iron nanoparticles. J. Hazard. Mater. 318, 533, 2016.
  • 130. Gong Y., Liu Y., Xiong Z., Kaback D., Zhao D. Immobilization of mercury in field soil and sediment using carboxymethyl cellulose stabilized iron sulfide nanoparticles. Nanotechnology, 23, Article number 294007, 2012.
  • 131. Olson M.R., Blotevogel J., Borch T., Petersen M.A., Royer R.A., Sale T.C. Long-term potential of in situ chemical reduction for treatment of polychlorinated biphenyls in soils. Chemosphere, 114, 144, 2014.
  • 132. El-Temsah Y.S., Joner E.J. Effects of nano-sized zero-valent iron (nZVI) on DDT degradation in soil and its toxicity to collembola and ostracods. Chemosphere, 92, 131, 2013.
  • 133. de Velosa A.C., Nogueira R.F.P. 2, 4-Dichlorophenoxyacetic acid (2, 4-D) degradation promoted by nanoparticulate zerovalent iron (nZVI) in aerobic suspensions. J. Environ. Manag. 121, 72, 2013.
  • 134. Fan W., Peng R., Li X., Ren J., Liu T., Wang X. Effect of titanium dioxide nanoparticles on copper toxicity to Daphnia magna in water: Role of organic matter. Water Res. 105, 129, 2016.
  • 135. Shen X., Zhao L., Ding Y., Liu B., Zeng H., Zhong L., Li X. Foam, a promising vehicle to deliver nanoparticles for vadose zone remediation. J. Hazard. Mater. 186, 1773, 2011.
  • 136. Katti K.V. Renaissance of nuclear medicine through green nanotechnology: functionalized radioactive gold nanoparticles in cancer therapy – my journey from chemistry to saving human lives. J. Radioanal Nucl. Chem. 1, Article number 10, 2016.
  • 137. Shalaby S.M., Khater M.K., Perucho A.M., Mohamed S.A., Helwa I., Laknaur A., AlHendy A.A. Magnetic nanoparticles as a new approach to improve the efficacy of gene therapy against differentiated human uterine fibroid cells and tumor-initiating stem cells. Fertil Steril. 105, 1638, 2016.
  • 138. Siddiqui I.A., Sanna V. Impact of nanotechnology on the delivery of natural products for cancer prevention and therapy. Mol. Nutr. Food Res. 60, 1330, 2016.
  • 139. Wang P., Li Z., Ma Y., Sun X., Liu Z., Zhang J. The coarse-grained model for a water/oil/solid system: based on the correlation of water/air and water/oil contact angles. RSC Adv. 5, 51135, 2015.
  • 140. Wu Q., Ridge C.J., Zhao S., Zakharov D., Cen J., Tong X., Orlov A. Development of a new generation of stable, tunable, and catalytically active nanoparticles produced by the helium nanodroplet deposition method. J. Phys. Chem. Lett. 7, 2910, 2016.
  • 141. Incerti S., Barberet P., Dévès G., Michelet C., Francis Z., Ivantchenko V., Karamitros M. Comparison of experimental proton-induced fluorescence spectra for a selection of thin high-Z samples with Geant4 Monte Carlo simulations. Nucl. Instr. Meth. Phys. Res. 358, 210, 2015.
  • 142. Lambe U., Minakshi P., Brar B., Guray M., Ranjan K., Bansal N. Tufarelli V. Nanodiagnostics: a new frontier for veterinary and medical sciences. J. Exp. Biol. Agric. 4, 307, 2016.
  • 143. Rangnekar A., LaBean T.H. Building DNA nanostructures for molecular computation, templated assembly, and biological applications. Acc. Chem. Res. 47, 1778, 2014.
  • 144. Schmidt T.L., Beliveau B.J., Uca Y.O., Theilmann M., Da Cruz F., Wu C.T., Shih W.M. Scalable amplification of strand subsets from chip-synthesized oligonucleotide libraries. Nat Commun. 6, Article number 8634, 2015.
  • 145. Das S., Sen B., Debnath N. Recent trends in nanomaterials applications in environmental monitoring and remediation. Environ. Sci. Pollut. R. 22, 18333, 2015.
  • 146. Park C.M., Chu K.H., Heo J., Her N., Jang M., Son A., Yoon Y. Environmental behavior of engineered nanomaterials in porous media: a review. J Hazard Mater. 309, 133, 2016.
  • 147. Zhang Y., He Z., Wang H., Qi L., Liu G., Zhang X. Applications of hollow nanomaterials in environmental remediation and monitoring: A review. Front. Env. Sci. Eng. 9, 770, 2015.
  • 148. Hu H., Ji F., Xu Y., Yu J., Liu Q., Chen L., Zhang Q. Reversible and precise self-assembly of janus metal-organosilica nanoparticles through a linker-free approach. ACS Nano. 10, 7323, 2016.
  • 149. Han C., Sun Q., Li Z., Dou S.X. Thermoelectric enhancement of different kinds of metal chalcogenides. Adv. Energy Mater. 6, Article number 1600498, 2016.
  • 150. Cea P., Martín S., González-Orive A., Osorio H.M., Quintín P., Herrer L. Nanofabrication and electrochemical characterization of self-assembled monolayers sandwiched between metal nanoparticles and electrode surfaces. J. Chem. Educ. 93, 1441, 2016.
  • 151. Dong J., Goldthorpe I.A., Abukhdeir N.M. Automated quantification of one-dimensional nanostructure alignment on surfaces. Nanotechnology, 27, Article number 235701, 2016.
  • 152. Govindarajan M., Hoti S.L., Rajeswary M., Benelli G. One-step synthesis of polydispersed silver nanocrystals using Malva sylvestris: an eco-friendly mosquito larvicide with negligible impact on non-target aquatic organisms. J. Parasitol. Res. 1, Article number 11, 2016.
  • 153. Jackman J.A., Cho D.J., Lee J., Chen J.M., Besenbacher F., Bonnell D., Acho N.J. Nanotechnology education for the global world: training the leaders of tomorrow. ACS Nano, 10, 5595, 2016.
  • 154. Li H., Deng Y., Liang J., Dai Y., Li B., Ren Y., Li C. Direct preparation of hollow nanospheres with kraft lignin: A facile strategy for effective utilization of biomass waste. BioResources, 11, 3073, 2016a.
  • 155. Li J., Mo L., Lu C.H., Fu T., Yang H.H., Tan W. Functional nucleic acid-based hydrogels for bioanalytical and biomedical applications. Chem Soc Rev. 45, 1410, 2016b.
  • 156. Cinelli M., Coles S.R., Sadik O., Karn B., Kirwan K. A framework of criteria for the sustainability assessment of nanoproducts. J. Clean Prod. 126, 277, 2016.
  • 157. Ali Tahir A., Ullah H., Sudhagar P., Asri M.T.M., Devadoss A., Sundaram S. The application of graphene and its derivatives to energy conversion, storage, and environmental and biosensing devices. Chem. Rec. 16, 1591, 2016.
  • 158. Li J., Rozen I., Wang J. Rocket science at the nanoscale. ACS nano, 10, 5619, 2016c.
  • 159. Scognamiglio V., Antonacci A., Patrolecco L., Lambreva M.D., Litescu S.C., Ghuge S.A., Rea G. Analytical tools monitoring endocrine disrupting chemicals. Trends Anal Chem. 80, 555, 2016.
  • 160. Elango G., Roopan S.M. Efficacy of SnO₂ nanoparticles toward photocatalytic degradation of methylene blue dye. J. Photochem. Photobiol. B. 155, 34, 2016.
  • 161. Begum R., Farooqi Z.H., Khan S.R. Poly (N-isopropylacrylamide-Acrylic acid) copolymer microgels for various applications: A Review. Int. J. Polym. Mater. Po. 65, 841, 2016.
  • 162. Li Y., Xin H., Liu X., Zhang Y., Lei H., Li B. Trapping and detection of nanoparticles and cells using a parallel photonic nanojet array. ACS nano, 10, 5800, 2016.
  • 163. Pereira L., Mehboob F., Stams A.J., Mota M.M., Rijnaarts H.H., Alves M.M. Metallic nanoparticles: microbial synthesis and unique properties for biotechnological applications, bioavailability and biotransformation. Crit. Rev. Biotechnol. 35, 114, 2015.
  • 164. Bogdan J., Jackowska-Tracz A., Zarzyńska J., Pławińska-Czarnak J. Chances and limitations of nanosized titanium dioxide practical application in view of its physicochemical properties. Nanoscale Res. Lett. 10, Article number 57, 2015.
  • 165. Peters R.J., Bouwmeester H., Gottardo S., Amenta V., Arena M., Brandhoff P., Rauscher H. Nanomaterials for products and application in agriculture, feed and food. Trends Food Sci. Tech. 54, 155, 2016.
  • 166. Ibrahim R.K., Hayyan M., AlSaadi M.A., Hayyan A., Ibrahim S. Environmental application of nanotechnology: air, soil, and water. Environ. Sci. Pollut. R. 23, 13764, 2016.
  • 167. Dadrasnia A., Salmah I., Emenike C.U., Shahsavari N. Remediation of oil contaminated media using organic material supplementation. Petrol. Sci. Techno. 33, 1030, 2015.
  • 168. Husen A., Siddiqi K.S. Phytosynthesis of nanoparticles: concept, controversy and application. Nanoscale Res. Lett. 9, 1, 2014.
  • 169. Fernández-Llamosas H., Castro L., Blázquez M.L., Díaz E., Carmona M. Biosynthesis of selenium nanoparticles by Azoarcus sp. Microb Cell Fact. 15, Article number 109, 2016.
  • 170. Pollmann K., Kutschke S., Matys S., Kostudis S., Hopfe S., Raff J. Novel biotechnological approaches for the recovery of metals from primary and secondary resources. Minerals, 6, Articlew number 54, 2016.
  • 171. Beattie A.J., Hay M., Magnusson B., de Nys R., Smeathers J., Vincent J.F. Ecology and bioprospecting. Austral. Ecol. 36, 341, 2011.
  • 172. Emtiazi G., Heydari E., Saleh T. Oxidation of toxic methyl tert-butyl ether (MTBE) by fungi and nanofilter. Jundishapur J.Microbiol. 3, 99, 2010.
  • 173. Bozarth A., Maier U.G., Zauner S. Diatoms in biotechnology: modern tools and applications. Appl. Microbiol. Biotechnol. 82, 195, 2009.
  • 174. Juwarkar A.A., Singh S.K., Mudhoo A. A comprehensive overview of elements in bioremediation. Rev. Environ. Sci. Bio. 9, 215, 2010.
  • 175. Calvante A. Taller de sustentabilidad. México. Available on line at: http://tallerde,sustentabilidad.ced. cl/wp/wp-content/uploads/2015/04/UAIS-El-concepto-moderno-de-sustentabilidad.pdf. (Accessed September 30, 2016). 2016.
  • 176. Lv J., Wu J., Zhang C., Luo Y. Preparing nano magnesium hydroxide-nitrogen doped porous carbon complex material using seaweed biomass useful in remediation of contaminated environment, comprises soaking of seaweed biomass in magnesium ion-urea solution. Patent Number: CN106475052-A, 2017.
  • 177. Ming G., Quin Y., Niu X., Ren F., Wu H., Sun Z., Wang D., Wang Z., Zhang C. Soil conditioning agent for remediation of soil contaminated by heavy metal, involves dissolving soluble starch in water, adding water-soluble nano-silica, adding attapulgite powder and immersing cordierite honeycomb in calcium nitrate. Patent Number: CN105950155-A, 2016a.
  • 178. Ming G., Quin Y., Niu X., Ren F., Wu H., Sun Z., Wang D., Wang Z., Zhang C. Heavy metal soil repairing agent for remediation of heavy metal pollution in soil, contains attapulgite clay, polyamide fiber, sodium humate, metal chelating agent, biological carbon, polyferric chloride, peat, and calcium peroxide. Patent Number: CN105950180-A, 2016b.
  • 179. Ming G., Quin Y., Niu X., Ren F., Wu H., Sun Z., Wang D., Wang Z., Zhang C. Attapulgite nanocomposite repairing agent used in e.g. ecological restoration projects in mining areas, contains attapulgite powder, lime powder, hydroxyapatite, nano-silica, gravel, activated carbon, and calcium peroxide. Patent Number: CN105950181-A, 2016c.
  • 180. Chai L., Wang H., Tang Z., Yang Z., Yang W., Liang L., Shi W. Microbial assembly synthesis method for preparation of arsenic-contaminated soil remediation fixing agent, involves activating and culturing filamentous fungi, and dispersing alpha-ferric oxide nanoparticles in liquid medium. Patent Number: CN105733593-A, 2016a.
  • 181. Chai L., Li Q., Wang H., Tang C., Yang Z., Wang Q., Liang L., Shi W. Method for preparation of iron-based bio-char material used for remediation of arsenic-polluted soil, involves activating and culturing filamentous fungi and dispersing alpha-ferric oxide nanoparticles in liquid medium. Patent Number: CN105733588-A, 2016b.
  • 182. Chai L., Wang H., Tang C., Yang Z., Liao Q., Liang L., Shi W., Deng N. Application of microbial-based assembly synthetic lead-contaminated soil remediation fixing agent. Patent Number: CN105647539-A, 2016c.
  • 183. Chai L., Li Q., Min X., Wang H., Tang C., Yang Z., Liang L., Shi W. Method for preparing phosphorusbased bio-carbon material for remediation of cadmium contaminated soil, involves utilizing culture medium of filamentous fungus, adding hydroxyapatite nanoparticle followed by inoculating, shaking and drying. Patent Number: CN105598158-A, 2016d.
  • 184. Li J., Liu X. Remediation method of contaminated site involves coating surface of zerovalent nano iron with organic polymer layer, injecting coated nano iron into contaminated soil, oxidizing and injecting bacterium solution into contaminated soil. Patent Number: CN104801540-A, 2015a.
  • 185. Li J., Liu X. Method for determining content of effective iron in nano zero-valent iron particle that is utilized for remediating contaminated sites, involves preparing azo dye solution concentration gradient, followed by using spectrometer. Patent Number: CN104807762-A, 2015b.
  • 186. Li J., Liu X. Magnetic nano-material used for heavy metal contaminated soil remediation, has organic matter cladding layer that is provided outside core, while cladding layer is fibrous radially distributed on surface of particle. Patent Number: CN104801534-A, 2015c.
  • 187. Cheng G., Zhong Y. Soil remediation nano-material contains bentonite, fly ash, magnesium nitrate, barium oxide nanoparticles, polymeric ferric aluminum silicate, stachydrine, dimethylol urea calcium aluminate, magnesium aluminosilicate and phospholipid. Patent Number: CN105505397-A, 2015a.
  • 188. Cheng G., Zhong Y. Lead ion contaminated soil remediation agent comprises bentonite, diatomite, wollastonite, polyaluminum ferric silicate, magnesium zinc ferrite, dibasic calcium phosphate dihydrate, nano-magnesium oxide and potassium fluorozirconate. Patent Number: CN105505398-A, 2015b.
  • 189. Cheng G., Zhong Y. Copper ion contaminated soil remediation agent comprises coal ash, bentonite, diatomite, polyaluminum ferric chloride, calcium aluminate, calcium oxide, plant ash, triazine trisodium salt, nano-zinc oxide and potassium humate. Patent Number: CN105441082-A, 2015c.
  • 190. Fang Z., Yang Z. Preparation of composite material used for remediation of lead-contaminated soil, involves dispersing nano hydroxyapatite in water, mixing potassium chloride and agricultural waste and performing pyrolysis process. Patent Number: CN105131960-A, 2015.
  • 191. Fang Z., Su H. Preparation of biochar particles used in preparing load type zero value nano-iron particles for in-situ remediation of chromium-contaminated soil by drying agricultural waste, carrying out deoxy-carbonization, grinding, and sieving. Patent Number: CN105013811-A, 2015.
  • 192. Fang Z., Xie Y. Method for preparing dispersed nanometer nickel/iron bimetallic particles that are utilized to in-situ remediation of poly brominated diphenyl ethers polluted soil, involves mixing iron salt, and polyvinyl pyrrolidone, followed by drying. Patent Number: CN103157810-A, 2013.
  • 193. Feng X., Li M., Liang R., Xiang Y., Geng L. Ecological slope protection for remediation treatment of e.g. domestic sewage, has multilayered ecological bag filled with nanocomposite material comprising heavy metal-removing material and total phosphorus-removing material. Patent Number: CN106430598-A, 2016a.
  • 194. Feng X., Li M., Liang R., Xiang Y., Geng L. Black and shrimp water remediation treatment ecological slope protection device has ecological bag whose bottom portion is provided with reinforced screen, and which is provided with multifunctional nano-material composite layer. Patent Number: CN206051687-U, 2016b.
  • 195. Bezbaruah A., Almeelbi T.B., Quamme M., Kahn E., Khan E. Removing contaminant from aqueous medium involves contacting aqueous medium with remediation material comprising bare nanoscale zero-valent iron particles or calcium-alginate entrapped nanoscale zero-valent iron. Patent Number: WO₂014168728-A1, 2015.
  • 196. Chisholm B.J., Bezbaruah A., Kalita H., Chisholm B. New functionalized amphiphilic plant-based copolymers used e.g. in composition for coating article, as dispersal and suspension agents, for environmental remediation, as solubilizers, detergents, paper coatings and pigment dispersants. Patent Number: WO₂013173734-A1, 2014.
  • 197. Chen M., Wang X., Wang R., Zhang J., Li X. Remediating agent used for heavy metal lead-cadmium and lead-cadmium sulfide composite contaminated soil, preferably mine soil or agricultural land, comprises modified carbon nanotubes, modified clay mineral and lime. Patent Number: CN104893732-A, 2015.
  • 198. Gao W., Han L., Qian L., Yan J., Chen M. Method for degrading organic pollutant of persulfate in water, involves utilizing activator composite material, adding water with organic pollutants with activating agent and carbon, followed by adding ammonium sulfate with material. Patent Number: CN104129841-A, 2014.

Typ dokumentu

Bibliografia

Identyfikatory

Identyfikator YADDA

bwmeta1.element.agro-479c8a1e-690e-4a3c-aae3-7a0e498e3607
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.