PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
2015 | 75 | 2 |

Tytuł artykułu

Zolpidem withdrawal induced uncoupling of GABAA receptors in vitro associated with altered GABAA receptor subunit mRNA expression

Warianty tytułu

Języki publikacji

EN

Abstrakty

EN
Hypnotic Zolpidem produces its effects via the benzodiazepine binding site in a1-containing GABAA receptors. The aim of the study was to assess the influence of duration of Zolpidem treatment and its withdrawal, as well as the role of a1-containing GABAA receptors in the development of physical dependence and tolerance. Namely, recombinant receptors can be used to characterize mechanisms involved in different processes in the brain and to delineate the contribution of specific receptor subtypes. To address the influence of chronic Zolpidem treatment we exposed HEK293 cells stably expressing a102y2S recombinant GABAA receptors for seven consecutive days, while withdrawal periods lasted for 24, 48, 72 and 96 hours. Using radioligand binding studies we determined that chronic Zolpidem treatment did not induce changes in either GABAA receptor number or in the expression of subunit mRNAs. We observed the enhancement of binding sites and upregulated expression of subunit mRNAs only following 96-hour withdrawal. Moreover, Zolpidem treatment and its withdrawal (all time points) induced functional uncoupling between GABA and benzodiazepine binding sites in the GABAA receptor complex. Accordingly, it might be assumed that Zolpidem withdrawal-induced uncoupling of GABAA receptors is associated with altered GABAA receptor subunit mRNA expression. The results presented here provide an insight into molecular and cellular mechanisms probably underlying adaptive changes of GABAA receptor function in response to chronic usage and withdrawal of zolpidem and perhaps the observed molecular changes could be linked to the tolerance and dependence produced upon prolonged treatment with other GABAergic drugs.

Wydawca

-

Rocznik

Tom

75

Numer

2

Opis fizyczny

p.160-171,fig.,ref.

Twórcy

  • Laboratory of Molecular Neuropharmacology, Division of Molecular Medicine, Ruder Boskovic Institute, Zagreb Croatia
  • Department of Psychology, Croatian Catholic University, Zagreb, Croatia
autor
  • Laboratory of Molecular Neuropharmacology, Division of Molecular Medicine, Ruder Boskovic Institute, Zagreb Croatia
autor
  • Department of Pharmacology and Toxicology, Faculty of Veterinary Medicine, University of Zagreb, Zagreb, Croatia

Bibliografia

  • Ali NJ, Olsen RW (2001) Chronic benzodiazepine treatment of cells expressing recombinant GABA(A) receptors uncouples allosteric binding: studies on possible mecha¬nisms. J Neurochem 79: 1100-1108.
  • Auta J, Impagnatiello F, Kadriu B, Guidotti A, Costa E (2008) Imidazenil: a low efficacy agonist at alpha1- but high efficacy at alpha5-GABAA receptors fail to show anticonvulsant cross tolerance to diazepam or zolpidem. Neuropharmacology 55: 148-153.
  • Bateson AN (2002) Basic pharmacological mechanisms involved in benzodiazepine tolerance and withdrawal. Curr Pharm Des 8: 5-21.
  • Besnard F, Even Y, Itier V, Granger P, Partiseti M, Avenet P, Depoortere H, Graham D (1997) Development of stable cell lines expressing different subtypes of GABAA recep¬tors. J Recept Signal Transduct Res 17: 99-113.
  • Biggio G, Dazzi L, Biggio F, Mancuso L, Talani G, Busonero F, Mostallino MC, Sanna E, Follesa P (2003) Molecular mechanisms of tolerance to and withdrawal of GABA(A) receptor modulators. Eur Neuropsychopharmacol 13: 411-423.
  • Crestani F, Martin JR, Mohler H, Rudolph (2000) Mechanism of action of the hypnotic zolpidem in vivo. Br J Pharmacol 131: 1251-1254.
  • Depoortere H, Zivkovic B, Lloyd KG, Sanger DJ, Perrault G, Langer SZ, Bartholini G (1986) Zolpidem, a novel non- benzodiazepine hypnotic. I. Neuropharmacological and behavioral effects. J Pharmacol Exp Ther 237: 649-658.
  • Fitzgerald AC, Wright BT, Heldt SA (2014) The behavioral pharmacology of zolpidem: evidence for the functional significance of al-containing GABA(A) receptors. Psychopharmacology (Berl) 231: 1865-1896.
  • Follesa P, Mancuso L, Biggio F, Cagetti E, Franco M, Trapani G, Biggio G (2002) Changes in GABAA receptor gene expression induced by withdrawal of, but not by long-term exposure to, zaleplon or zolpidem. Neuropharmacology 42: 191-198.
  • Fradley RL, Guscott MR, Bull S, Hallett DJ, Goodacre SC, Wafford KA (2007) Differential contribution of GABA(A) receptor subtypes to the anticonvulsant efficacy of benzo¬diazepine site ligands. J Psychopharmacol 21: 384-391.
  • Gallager DW, Lakoski JM, Gonsalves SF, Rauch SL (1984) Chronic benzodiazepine treatment decreases postsynaptic GABA sensitivity. Nature 308: 74-77.
  • Galpern WR, Lumpkin M, Greenblatt DJ, Shader RI, Miller LG (1991) Chronic benzodiazepine administration. VII. Behavioral tolerance and withdrawal and receptor altera¬tions associated with clonazepam administration. Psychopharmacol (Berl) 104: 225-230.
  • Gravielle MC, Faris R, Russek SJ, Farb DH (2005) GABA induces activity dependent delayed-onset uncoupling of GABA/benzodiazepine site interactions in neocortical neurons. J Biol Chem 280: 20954-20960.
  • Gutiérrez ML, Ferren MC, Gravielle MC (2014) GABA- induced uncoupling of GABA/benzodiazepine site inter¬actions is mediated by increased GABAA receptor inter¬nalization and associated with a change in subunit com¬position. Neuroscience 257: 119-129.
  • Holt RA, Bateson AN, Martin IL (1997) Chronic zolpidem treatment alters GABA(A) receptor mRNA levels in the rat cortex. Eur J Pharmacol 329: 129-132.
  • Itier V, Granger P, Perrault G, Depoortere H, Scatton B, Avenet P (1996) Protracted treatment with diazepam reduces benzo-diazepine! receptor-mediated potentiation of gamma-amin- obutyric acid-induced currents in dissociated rat hippocam- pal neurons. J Pharmacol Exp Ther 279: 1092-1099.
  • Jazvinscak Jembrek M, Svob Strac D, Vlainic J, Pericic D (2008) The role of transcriptional and translational mech¬anisms in flumazenil-induced up-regulation of recombi¬nant GABA(A) receptors. Neurosci Res 61: 234-241.
  • Jazvinscak Jembrek M, Cipak Gasparovic A, Vukovic L, Vlainic J, Zarkovic N, Orsolic N (2012) Quercetin sup¬plementation: insight into the potentially harmful out¬comes of neurodegenerative prevention. Naunyn Schmiedebergs Arch Pharmacol 385: 1185-1197.
  • Kang I, Lindquist DG, Kinane B, Ercolani L, Pritchard GA, Miller LG (1994) Isolation and characterization of the promoter of the human GABAA receptor al subunit gene. J Neurochem 62: 1643-1646.
  • Klein RL, Whiting PJ, Harris RA (1994) Benzodiazepine treatment causes uncoupling of recombinant GABAA receptors expressed in stably transfected cells. J Neurochem 63: 2349-2352.
  • Klein RL, Mascia MP, Harkness PC, Hadingham KL, Whiting PJ, Harris RA (1995) Regulation of allosteric coupling and function of stably expressed y-aminobutyric acid (GABA)A receptors by chronic treatment with GABAA and benzodiazepine agonists. J Pharmacol Exp Ther 274: 1484-1492.
  • Korpi ER, Grunder G, Lüddens H (2002) Drug interactions at GABA(A) receptors. Prog Neurobiol 67: 113-159.
  • Lewin E, Peris J, Bleck V, Zahniser NR, Harris RA (1989) Diazepam sensitizes mice to FG 7142 and reduces musci- mol-stimulated 36Cl- flux. Pharmacol Biochem Behav 33: 465-468.
  • Lilly SM, Zeng XJ, Tietz EI (2003) Role of protein kinase A in GABAA receptor dysfunction in CA1 pyramidal cells following chronic benzodiazepine treatment. J Neurochem 85: 988-998.
  • Murphy HM, Ihekoronze C, Wideman CH (2011) Zolpidem- induced changes in activity, metabolism, and anxiety in rats. Pharmacol Biochem Behav 98: 81-86.
  • Olsen RW, Sieghart W (2008) International Union of Pharmacology. LXX. Subtypes of gamma-aminobutyric acid(A) receptors: classification on the basis of subunit composition, pharmacology, and function. Pharmacol Rev 60: 243-260.
  • Pericic D, Jazvinscak Jembrek M, Svob Strac D, Lazic J, Spoljaric IR (2005) Enhancement of benzodiazepine binding sites following chronic treatment with flumaze- nil. Eur J Pharmacol 507: 7-13.
  • Pericic D, Svob Strac D, Jazvinscak Jembrek M, Vlainic J (2007) Allosteric uncoupling and up-regulation of benzo- diazepine and GABA recognition sites following chronic diazepam treatment of HEK 293 cells stably transfected with alpha1beta2gamma2S subunits of GABA(A) recep¬tors. Naunyn Schmiedebergs Arch Pharmacol 375: 177¬187.
  • Pericic D, Vlainic J, Svob Strac D (2008) Sedative and anti- convulsant effects of zolpidem in adult and aged mice. J Neural Transm 115: 795-802.
  • Primus RJ, Yu J, Xu J, Hartnett C, Meyyappan M, Kostas C, Ramabhadran TV, Gallager DW (1996) Allosteric uncou¬pling after chronic benzodiazepine exposure of recombi¬nant y-aminobutyric acidA receptors expressed in Sf9 cells: ligand efficacy and subtype selectivity. J Pharmacol Exp Ther 276: 882-890.
  • Roca DJ, Schiller GD, Friedman L, Rozenberg I, Gibbs TT, Farb DH (1990) y-Aminobutyric acidA receptor regulation in culture: altered allosteric interactions following pro¬longed exposure to benzodiazepines, barbiturates, and methylxanthines. Mol Pharmacol 37: 710-719.
  • Rudolph U, Crestani F, Benke D, Brünig I, Benson JA, Fritschy JM, Martin JR, Bluethmann H, Möhler H (1999) Benzodiazepine actions mediated by specific gamma- aminobutyric acid(A) receptor subtypes. Nature 401: 796-800.
  • Sanger DJ, Zivkovic B (1986) The discriminative stimulus properties of zolpidem, a novel imidazopyridine hypnot¬ic. Psychopharmacol (Berl) 89: 317-322.
  • Sanger DJ, Morel E, Perrault G (1996) Comparison of the pharmacological profiles of the hypnotic drugs, zaleplon and zolpidem. Eur J Pharmacol 313: 35-42.
  • Sanna E, Busonero F, Talani G, Carta M, Massa F, Peis M, Maciocco E, Biggio G (2002) Comparison of the effects of zaleplon, zolpidem, and triazolam at various GABA(A) receptor subtypes. Eur J Pharmacol 451: 103-110.
  • Shaw G, Morse S, Ararat M, Graham FL (2002) Preferential transformation of human neuronal cells by human adeno¬viruses and the origin of HEK 293 cells. FASEB J 16: 869-871.
  • Svob Strac D, Vlainic J, Jazvinscak Jembrek M, Pericic D (2008) Differential effects of diazepam treatment and withdrawal on recombinant GABAA receptor expression and functional coupling. Brain Res 1246: 29-40.
  • Toki S, Saito T, Hatta S, Takahata N (1996) Diazepam physical dependence and withdrawal in rats is associated with alteration in GABAA receptor function. Life Sci 59: 1631-1641.
  • Uusi-Oukari M, Heikkilä J, Sinkkonen ST, Mäkelä R, Hauer B, Homanics GE, Sieghart W, Wisden W, Korpi ER (2000) Long-range interactions in neuronal gene expres¬sion: evidence from gene targeting in the GABAA recep¬tor ß2-a6-a1-y2 subunit gene cluster. Mol Cell Neurosci 16: 34-41.
  • Uusi-Oukari M, Korpi ER (2010) Regulation of GABAA receptor subunit expression by pharmacological agents. Pharmacol Rev 62: 97-135.
  • Victorri-Vigneau C, Feuillet F, Wainstein L, Grall-Bronnec M, Pivette J, Chaslerie A, Sebille V, Jolliet P (2013) Pharmacoepidemiological characterisation of zolpidem and zopiclone usage. Eur J Clin Pharmacol 69: 1965¬1972.
  • Vinkers Ch, Olivier B (2012) mechanisms underlying toler¬ance after long-term benzodiazepine use: a future for subtype-selective GABA(A) receptor modulators? Adv Pharmacol Sci 2012: 416864.
  • Vlainic J, Pericic D (2009) Effect of acute and repeated zolpidem treatment on pentylenetetrazole-induced sei¬zure threshold and on locomotor activity: comparison with diazepam. Neuropharmacology 56: 1124-1130.
  • Vlainic J, Pericic D (2010) Zolpidem is a potent anticonvul¬sant in adult and aged mice. Brain Res 1310: 181-188.
  • Vlainic J, Jazvinscak Jembrek M, Svob Strac D, Pericic D (2010) The effects of zolpidem treatment and withdrawal on the in vitro expression of recombinant alpha1beta2g- amma2s GABA(A) receptors expressed in HEK 293 cells. Naunyn Schmiedebergs Arch Pharmacol 382: 201¬212.
  • Vlainic J, Jembrek MJ, Vlainic T, Strac DS, Pericic D (2012a) Differential effects of short- and long-term zolpi¬dem treatment on recombinant a1ß2y2s subtype of GABA(A) receptors in vitro. Acta Pharmacol Sin 33: 1469-1476.
  • Vlainic J, Svob Strac D, Jazvinscak Jembrek M, Vlainic T, Pericic D (2012b) The effects of zolpidem treatment on GABA(A) receptors in cultured cerebellar granule cells: changes in functional coupling. Life Sci 90: 889-894.
  • Wong G, Lyon T, Skolnick P (1994) Chronic exposure to benzodiazepine receptor ligands uncouples the gamma- aminobutyric acid type A receptor in WSS-1 cells. Mol Pharmacol 46: 1056-1062.
  • Wright BT, Gluszek CF, Heidt SA (2014) The effects of repeated zolpidem treatment on tolerance, withdrawal¬like symptoms, and GABAA receptor mRNAs profile expression in mice: Comparison with diazepam. Psychopharmacol (Berl) 231: 1865-1896.

Typ dokumentu

Bibliografia

Identyfikatory

Identyfikator YADDA

bwmeta1.element.agro-475b84f9-73cf-4312-a669-327f80933141
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.