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Summary 

Diagnosing cancer in a mammogram is a difficult task. Our aim is to explore the usefulness 
of so called fractal signatures for this purpose. A fractal signature is given by a vector of p real 
numbers characterizing the roughness of a mammogram considered as a texture file. Fractal signa-
tures of length 48 are considered. Are all of them relevant to make the 2–group diagnosis: non–
cancer or cancer? To answer this question, we used the Least–Angle Regression (LARS) which is 
believed more stable than the traditional forward search. By 5–fold cross–validation we found that 
only a small subset of variables is relevant for the diagnosis. The considerations are illustrated 
using data from the MIAS data base. 
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1. Introduction 

Breast cancer is one of the most frequent mortal diseases in women. When 
early diagnosed, there is a great chance that it will be cured. Therefore Medical 
Care organizes frequent mass screening of adult female population. During the 
screening, breast radiological images are taken. By inspecting a radiogram 
frame (called mammogram), specialists may notice a distortion of the breast 
mass architecture indicating a developing cancer structure. A sample of one 
mammogram frame is shown in Figure 1, left exhibit. Finding the cancerous 
structure is a difficult task, see Woodward et al. (2007). There is a need for an 
automated diagnosis. However, the proposed automated methods use sophisti-
cated algorithms and the result is not obvious (Verma 2008, Sankar and Tomas 
2009, 2010).    

Our idea is the following one: The growth of a cancerous tumor is fractal–
like, and therefore the cell agglomeration should be different from that which 
resulted from the normal expansion. A radiological frame (mammogram) is in 
fact a bit–mapped image based on pixels. As such, it is a graphic file, memo-
rized as a matrix of pixels, where each pixel has color attributes expressed nu-
merically as so called unsigned integers or real numbers from the interval [0,1]. 
Moreover, such graphical file may be viewed as representing a texture (see e.g. 
Figure 1, right exhibit). The texture from a tumor image should show more 
roughness as a normal tissue image. To compare the roughness of mammograms 
we propose to use the method of fractal signatures (Peleg et al. 1984). The 
method is conceptually simple and intuitively appealing: it permits to translate 
the roughness of a texture (a 3–dimensional object) to a one–dimensional vector 
of real numbers. Thus, for each frame of fixed size (one mammogram) one ob-
tains for further analysis one data vector.  

We will illustrate the procedure by calculating fractal signature for 60 non–
cancer and 60 cancer mammograms. Each mammogram got its group label:  
y = – 1 for ‘no–cancer’ and y = +1 for ‘cancer’. Is it possible to built a linear 
discriminant function in the form of a linear regression permitting to classify 
the available sample into the two groups of data? The prediction may be done 
either using the full set of recorded variables (components of signatures), or a 
subset of them. How to find a relevant subset of the recorded variables? We are 
interested in finding regression equations which not only permit for a high clas-
sification accuracy in the training sample, but are able to do it also for test sam-
ples, not used for training. After reducing the data to fewer (hopefully relevant) 
variables, it is easier to perform a more sophisticated analysis, using, e.g. gene-
ralized discriminant analysis or/and kernel methods, see e.g. Hastie et al. 
(2010), Atkinson et al. (2004), Deręgowski and Krzyśko (2010). 

Next section (2) describes shortly the mammo120 data used for analysis. 
Section 3 recalls the concept of ordinary least squares regression and shows the 
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results of classification of the mammo120 data when using the full set of vari-
ables. Search for relevant variables using the LARS algorithm (Efron et al. 2004, 
Hastie et al. 2010, Sjıstrand et al. 2006) is described in Section 4. The efficacy 
of the models in classification the mammo120 data into two classes (normal and 
cancer) is evaluated using the full regression model and some selected sub-
models. The method of 5–fold cross–validation was used for obtaining test  
samples.  

2. The mammogram data  ‘mammo120’   and their fractal signatures 

In the following we will analyse a set of 120 mammograms taken from the 
data base MIAS (Mammographic Image Analysis Society) available at 
http://peipa.essex.ac.uk/ipa/pix/mias. There are all together 322 mammogram 
images, each of size 10241024×  memorized in pmg (Paint Magic) format. The 

images contain ‘normal’  breasts, i.e. without malformations, and ‘ab–normal’, 

that is with distorted structure, like calcification, benign or malicious tumors. 
The centers of the distortions and their radiuses may be found in the description 
of the data base.  

We have taken from this source 12 normal mammograms (denoted in the 
following as: ncncr) and 12 with malicious tumor (denoted in the following as 
cncr mammograms). This sample was augmented by varying the center of each 
mammogram by 5 pixels up, down, left and right. In such a way, we got five 
replicates of each sample, together 120 mammograms for further analysis. The 
obtained set of mammograms will be in the following called mammo120. It 
contains 60 normal and 60 cancer images. For further analysis, a square frame 
of 8181×  pixels was cut off from each mammogram according to the follow-
ing principle: (a) for ‘ab–normal’ mammograms the indicated center of distor-
tions was taken as the central pixel of the square; (b) for ‘normal’ mammograms 
the center was chosen somehow arbitrarily, with the attempt to locate it in simi-
lar region as those used in the case (a) above. Exemplary (square) frame from  
the mammo120 set  is shown in left exhibit of Figure 1. 
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Fig. 1.  A sample mammogram (m03). Left: as graphical frame containing a square image of size 

81×81 pixels. Right: The same image, viewed as texture 

 
For each square frame, a fractal signature with p=48 components was cal-

culated using the blanket algorithm (Peleg et al. 1984, Białek 2010). The neces-
sary software (in Matlab) was taken from Białek (2010), where also a prelimi-
nary analysis of 10 normal and 10 cancer mammograms may be found. Apply-
ing Principal Component Analysis (PCA), he found that the first two Principal 
Components (PCs) explain more than 95% of total variance. When taking only 
these two PCs, he  found a linear discriminant function with the effect of mis-
classifying one normal sample (small distortion of the cell architecture, not yet 
visible to the eye of the expert?) and one cancer sample (wrongly recognized by 
the expert?). The correct classification percentage – based on the investigated 
sample – was 90% (Białek 2010).  

Now, before starting the analysis, each signature was standardized to have 
zero mean and unit standard deviation. This has the consequence that we have 
only 47=p  linearly independent variables. Twenty–four exemplary fractal 
signatures (12 ncnr and 12 cncr samples) are shown in Figure 2.  
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Fig. 2.  Curves exhibiting fractal signatures for 12 ncncr and 12 cncr images. Notice the rather 

regular shape of the normal curves and the much–dispersed shape of the cncr curves. Each curve 
was row–wise standardized to have zero mean and unit standard deviation 

 
All the recorded signatures were put together into a data matrix X  of size 

48120× . Because of the linear dependency of elements in each row, we have 
dropped the last column to obtain the full rank matrix X  of size 47120× . This 
matrix was supplemented with a label vector y of size 1120×  with values –1 or 
+1 indicating the ncncr or cncr status of the respective sample. The pair ( )yX,  
will serve as the basis for analysis in next sections. Summarizing, the method of 
fractal signatures allows for a representation of a data object (mammogram 
characterized by 65618181 =∗  pixel values) by a numerical vector with 

48=p  (or 47) components. It may be depicted as a time plot having the shape 
of a curve, with time meaning subsequent steps of the blanket algorithm. Exem-
plary curves for 24 mammograms are shown in Figure 2. 
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3. Full least squares regression  

Theoretical framework. Say, we have a set of training data in the form: 
( )11, yx , ( )22, yx , … , ( )NN y,x . Each ( )ipiii xxx ,, ,21 K=x  is a vector of 

feature measurements for the i th case; iy   is the observed output, called also 

target or the dependent variable. The label variable iy  (i=1,…, N) takes values  

1−=iy  for ncncr, and 1=iy  for cncr cases. The whole data may be put to-

gether as the pair ( )yX, , where ( )ijx=X , ( )iy=y , Ni ,,1K= , 

pj ,,1K= ..  The classical theory of linear models assumes that 

 εεεε++= 0bXby   (3.1) 

where X , the data matrix, is assumed to be composed of fixed real values, 
( )pbb ,,1 K=b  and 0b  are parameters of the model, and  ( )Nεε ,,1 K=εεεε  is a 

vector of independent random errors with expected value equal to zero and  

variance 2σ  for each i.  
The classical least squares (LS) minimization criterion is defined as the Re-

sidual Sum of Squares (RSS) computed as the quadratic form  

 ( ) ( ) ( )000, bbbRSS T −−−−= XbyXbyb  (3.2) 

The LS minimization problem is to find the vector b̂   and the constant  0̂b  

minimizing the quadratic form  ( )0,bRSSb  over all real values of  b , 0b . 

It can be shown that the regression coefficients b̂  and the constant 0̂b  may 

be obtained as 

 ( ) yXXXb ~~~~ˆ 1 TT −
=  ,       xby Tb ˆˆ

0 −=  (3.3) 

where the ‘~’ symbol means ‘mean–centered’ X  and y ; ( )T
pxx ,,1 K=x  

denotes the vector of mean values of consecutive columns of the observed ma-

trix X . The Gramm matrix  ( )XX
~~ T , called also the adjusted cross–product 

matrix of the variables, should be of full rank.  



 LARS REGRESSION IN DIAGNOSING MAMMOGRAMS… 79 

 

In the case when X  and  y  are columnwise centered to have means equal 
zero, formula (3.3) simplifies to 

 ( ) 0ˆ,ˆ
0

1 == −
bTT yXXXb  (3.4) 

and the predicted values of the target variable y  are then obtained as:  

 bXy ˆ= . (3.5) 

The computations. Taking the mammo120 data given as the pair ( )yX,  de-
scribed in Section 2, firstly the full LS regression model formulated in eq. (3.1) 
was computed. Before starting the calculations, the matrix X  and the vector y  
were centered to have zero means. The Matlab function regres was used for the 
regression calculations. Taking 48=p , Matlab has issued the warning that the 

cross–product matrix ( )XXT  is rank–deficient and is only of rank 47. Taking 

47=p , there were no warnings. We got the estimates of the intercept 0b and of 

the regression coefficients b  of size 147×  together with their 95% confidence 
intervals. They are shown in Figure 3, top exhibit, in the sequence 

4710 ,,, bbb K . Notice that the estimated value of b0 equals 0 and has a confi-

dence interval of width 0. Notice also the remarkable oscillations of values of 
succeeding regression coefficients for lower and higher No.s of the variables. 

Sixteen confidence intervals do not enclose zero  –   it is said in such a case 

that these coefficients are statistically significant at the 95% level, which means 
that these coefficients may be considered as different from zero.  

Investigating the global dependency of the target values y with its explana-

tory variables recorded in succeeding columns of the data matrix  X   we got 
the multiple squared correlation coefficient RR equal to 8619.0=RR , with 

5569.9=F  and 0001.0<P . The tested hypothesis H0 was: The population 
squared multiple correlation coefficient of the considered variables equals 0. 
The performed test rejected decidedly that hypothesis. This means that gene-
rally, the investigated predictors (the components of the recorded fractal signa-
tures) have some power to predict the ncncr or cncr class indicated in y , so we 
are entitled to investigate further this topic, for example to explore which con-
sidered variables contribute mostly to the stated correlation.  

Class assignements. How exactly are the class assignments obtained by the es-
timated regression coefficients? The predicted values ŷ , obtained from eq. 
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(3.5) as bXy ˆˆ =  are shown in Figure 3, bottom exhibit. The first 60 items from 

the mammo120 data belonged to the ncncr class and had 1−=Y  as its target 
value. Looking at the plot one may notice that all values iŷ  , 60,,1K=i  are 

negative. So the assignment by the constructed regression function was correct 
for all the ncncr cases. The remaining 60 items belonged to the cncr class and 
except one item (no. 84) got positive iŷ  values. Again, the assignments to this 

class were correct for all but one item. This confirms our previous observations 
that fractal signatures have some predictive power for cancer diagnosis.  

The high prediction accuracy shown in Figure 3, bottom exhibit, sounds 
very optimistic. However the golden principle in experimental design is: firstly 
derive some rule (prediction formula) using a ‘learning sample’, and then test 
the derived rule (formula) using a different, so called ‘test sample’. We have 
used for this purpose cross–validation samples (five–fold or two–fold cross–
validation) and stated that in the test samples the prediction accuracy was about 
80%  (see Table 1), or lower. This was obtained, when applying linear regres-
sion playing at the same time the role of a discriminant function, which is the 
simplest offer of pattern recognition methods for this purpose. There are other 
methods, more sophisticated, reported to be more effective, however they are 
computationally more complex and expensive. So we ask: Is it possible to re-
duce the set of predictors in our data, to make the diagnosis by more sophisti-
cated algorithms easier? The problem of selecting a smaller set of predictors 
will be considered in next section.  
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Fig. 3.  Full least squares regression in p=47 variables fitted from n=120 data points.  
Top: regression coefficients with 95% confidence intervals. Sixteen regression coefficients are 

statistically significant, which means that they are different from zero.  
Bottom: assignment of mammograms to the non–cancer or cancer class by the full linear 

regression function. Only one item (from the cancer class) is wrongly assigned to the non–cancer 
class  

4. Search for relevant variables using the LARS algorithm 

Introduction to the LARS algorithm.  Our goal is to find the variables (compo-
nents of signatures) that matter in establishing the prediction of the ncncr or 
cncr class. The predicting formula should have the form of a sparse linear re-
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gression function, which means that not all predictors will enter as arguments of 
the sought function. Traditionally this is done by a subset search. With larger 
number of variables this is done usually using a forward search. There are many 
variants of such algorithms (Atkinson et al. 2004; Hastie et al. 2010). We de-
cided to use for this purpose the LAR (Least Angle Regression) algorithm, as 
proposed originally by Efron et al. 2004), see also Hastie et al. (2010). LAR is 
intimately connected with the LASSO algorithm, which permits to control the L1 
norm of the derived regression coefficients. The combination LAR + LASSO got 
the name LARS. In the following we will use only the LAR version of the algo-
rithm.  

The LAR algorithm is a relative newcomer and represents a soft computing 
approach. In traditional algorithms, the selected variables enter hardly the active 
variables set. On the opposite, the LAR algorithm takes from a predictor “as 
much as it deserves”. Description of LARS taken from Hastie et al. (2010): “At 
the first step it identifies the variable most correlated with the response. Rather 
than fit this variable completely, LAR moves the coefficient of this variables 
continuously toward its least–square value (causing its correlation with the 
evolving residual to decrease in absolute value). As soon, as another variable 
‘catches up’ in terms of correlation with the residual, the process is paused. The 
second variable then joins the active set, and their coefficients are moved to-
gether in a way that keeps their correlations tied and decreasing  The process is 
continued until all variables are in the model and ends at the full least–squares 
fit.“ The result of the procedure appears as a curve showing the evolving path of 
the values of the regression coefficients.  
The LARS algorithm works in following steps (see Hastie et al. 2010): 

1. Standardize the predictors so to have mean zero and unit norm. Define 
the residual vector yyr ˆ−= , with ŷ  denoting the vector y   evalu-
ated under the presently assumed regression model, i.e. using the re-
gression coefficients {bj} being in the regression set.  Assume at the 
beginning that 021 ==== pbbb L , which means that the regression 

set is empty. Then 0ˆ =y .  

2. Find the predictor jx most correlated with r .  

3. Move jb  from zero towards its LS coefficient computed from the sca-

lar product rx ,j  until some other competitor kx   has as much cor-

relation with the current residual as does jx . Notice, this is done by 

inspecting the scalar products of the respective variables. 
4. Move jb  and kb  in the direction defined by the LS regression of the 

current residual r  on ( )kj xx ,  , until some competitor lx   has as 
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much correlation with the current residual – as the current active va-
riables jx , kx . Retain the values jb  and kb  at this moment and use 

them as the LS estimates computed from eq. (3.3) taking as the matrix 
X  the columns of active variables at this step. 

5. Continue in this way until all p predictors have been entered. After 
( )pN ,1min −  steps, we arrive at the full least square regression.  

 
The LAR algorithm is believed to be more stable and more ‘democratic’, as 

compared to the traditional forward search. The regression coefficients and 
fitted values are computed in a more cautious way than using LS algorithm 
which is described as ‘greedy’. The authors (Efron et al. 2004) elaborated an 
efficient algorithm for computing the full path of the development of the regres-
sion coefficients and implemented it in S and R. The complexity is within the 
range of the ordinary LS algorithm. A Matlab implementation by K. Skoglund 
is available at http://www2.imm.dtu.dk/~ksjo/kas/software/index.html 
(Sjıstrand, 2006). We gratefully acknowledge the use of that software for our 
computing of the LAR regression using the lars function from that package.  

Results of computations. The LARS algorithm yielded the same full regression 
coefficients as the LS method, – which was to be expected. Travelling towards 
the final full solution from 0=k  (no variables in the active set) to 47=k   (all 
variables in the active set), the applied algorithms has produced (and retained) 
in each step a sparse set of regression coefficients. The sets were not identical 
with those obtained by Matlab stepwise or stepwisefit procedures working 
upwards. Moreover, not the same variables were selected by Skoglund‘s lars 
and Matlab stepwise functions. For example, among the active variables ob-
tained for 7=k , only three variables were the same.  

The conclusion from this part of analysis might be as follows: The data al-
low for a good classification of its items into the ncncr and cncr classes. How-
ever this happens when testing the regression equation ‘by re–substitution’, that 
is, using the same data. To obtain a reasonable estimate of the prediction error, 
one should test it using an independent sample of data. The following questions 
were asked: 

1. What are the generalization abilities of the obtained function, when 
tested on an independent sample? Does it depend from the number of 
the predictors included into the predictive equation? 

2. Not all predictors are necessary for the prediction, which means that 
with a smaller amount of them we may achieve (nearly) the same goal. 
Which variables are the most relevant and should be included into the 
predictive set of variables?  
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To answer these questions, a cross–validation experiment was performed. 
We have used in the experiment the five–fold cross–validation method (5 CV), 
see e.g. Hastie et al. (2010) and obtained results shown in Figure 4.  
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Fig. 4. Residual Sum of Squares (RSS) from test parts of the data obtained by 5–fold 
crossvalidation. Mean of the RSS with one standard deviation bounds is superimposed. Notice 

that at the beginning, the RSS is declining – until  the step number k=5, then it remains flat, until 
k=30, and next it rises quite sharply 

 
The applied method proceeded as follows: The entire data was subdivided 

into five non–overlapping parts; each of them serving in turn as a test sample 
for the regression calculated from the remainder of the data. For each test sam-
ple the RSS (Residual Sum of Squares) was evaluated at each step of the LARS 
algorithm. This resulted in five curves exhibiting the dependency of the RSS 
statistics from the step number. The curves are shown in Figure 4.  

The mammo120 data contained 60 ncncr and 60 cncr cases. This yielded at 
each stage of the CV procedure 96 cases as training sample and 24 cases as test 
sample. Both samples were individually centered – before entering the LAR 
algorithm. Each of the five curves in Figure 4 shows the RSS evaluated from 24 
independent cases. The exhibited CV RSS curves put against the step number 
(equal to the number of active variables of the actual regression equation + 1) 
have a characteristic shape: firstly they are decaying, which means, that the 
variables entering the active set of the regression, are really effective and they 
reduce the error. Next, there is a period of stability: the variables do not im-
prove the separability of the ncncr and cncr sets, neither deteriorate it. This 
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happens for a range of approximately 25 additional variables. Finally, when 
introducing more variables, the error – in average – starts to rise.  

Each CV learning sample yielded at step k the sparse linear equation  

 ( ) p
k
p

kkk xbxbxby +++= ...2211x  (4.1) 

which, at step k, contained at appropriate places k non–zero regression coeffi-

cients k
jb  designated by the LARS algorithm, the remaining ones being by defi-

nition equal to zero. Using the above regression equation (4.1), the expected 
values ŷ  were calculated from (3.5). They served for class–assignments: cases 

x producing positive values of ( )xy  were classified as ‘cncr’; cases producing 

non–positive values ( )xy  were classified as ‘ncncr’. Obviously, the number of 
correct classifications depends on the number of variables k in the regression 
set. Taking [ ]47,35,30,20,6=k , we obtained the percentages of correct classi-
fication  shown in Table 1.   

 

Table 1. Percentage of correct classification, when taking k variables. Symbols CV1, CV2, CV3, 
CV4, CV5 denote results from the five test samples obtained by 5–fold cross–validation  

k CV1 CV2 CV3 CV4 CV5 average 
6 83.3333 83.3333 66.6667 91.6667 91.6667  83.3333 

20 79.1667   91.6667   54.1667   91.6667  87.5000    80.8333 

30  87.5000   83.3333   45.8333   91.6667  83.3333    78.3333 

35  87.5000   83.3333   41.6667   95.8333  83.3333    78.3333 

47  95.8333   83.3333   37.5000   87.5000  70.8333    75.0000 
 
One may notice that the results in  Table 1 are in accordance with the re-

sults shown in Figure 4. We got the answer for question 1. The prediction error 
depends on the number of predictors taken for analysis. A very moderate num-
ber of predictors produced the best results. With increasing number of predic-
tors the qualitity of the prediction is deteriorating. This result needs further 
confirmation. What concerns the 2nd question: which are the best predictors, we 
did not found a definite answer. It seems that for the elaborated data the maxi-
mum is very flat and different variables may yield results with similar predic-
tion quality. 
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