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Summary

Diagnosing cancer in a mammogram is a difficulkt@@ur aim is to explor¢he usefulness
of so called fractal signatures for this purposdraktal signature is given by a vectormfreal
numbers characterizing the roughness of a mammogoassidered as a texture file. Fractal signa-
tures of length 4&re considered. Are all of them relevant to maleZhgroup diagnosis: non—
cancer or cancer? To answer this question, we theeeast—Angle Regression (LARS) which is
believed more stable than the traditional forwasdrsh. By 5—fold cross—validation we found that
only a small subset of variables is relevant fa ttiagnosis. The considerations are illustrated
using data from the MIAS data base.
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1. Introduction

Breast cancer is one of the most frequent mortadaties in women. When
early diagnosed, there is a great chance thallibicured. Therefore Medical
Care organizes frequent mass screening of adulileepopulation. During the
screening, breast radiological images are taken.irBpecting a radiogram
frame (called mammogram), specialists may notiadistortion of the breast
mass architecture indicating a developing canaerctstre. A sample of one
mammogram frame is shown in Figure 1, left exhibihding the cancerous
structure is a difficult task, see Woodward et(2007). There is a need for an
automated diagnosis. However, the proposed autommathods use sophisti-
cated algorithms and the result is not obvious ¥e2008, Sankar and Tomas
2009, 2010).

Our idea is the following one: The growth of a aanmoeis tumor is fractal—
like, and therefore the cell agglomeration shouwdddifferent from that which
resulted from the normal expansion. A radiologitame (mammogram) is in
fact a bit-mapped image based on pixels. As stidh,d graphic file, memo-
rized as a matrix of pixels, where each pixel halsrcattributes expressed nu-
merically as so called unsigned integers or reaiyars from the interval [0,1].
Moreover, such graphical file may be viewed asesenting a texture (see e.g.
Figure 1, right exhibit). The texture from a tumarage should show more
roughness as a normal tissue image. To comparedighness of mammograms
we propose to use the method of fractal signat(ifeteg et al. 1984). The
method is conceptually simple and intuitively agiven it permits to translate
the roughness of a texture (a 3—dimensional obje@)one—dimensional vector
of real numbers. Thus, for each frame of fixed g@ee mammogram) one ob-
tains for further analysis one data vector.

We will illustrate the procedure by calculatingda signature for 60 non—
cancer and 60 cancer mammograms. Each mammograrits ggtoup label:
y = — 1 for ‘no—cancer’ and y = +1 for ‘cancer’.itgossible to built a linear
discriminant function in the form of a linear regs@®n permitting to classify
the available sample into the two groups of dath@ prediction may be done
either using the full set of recorded variablesnfponents of signatures), or a
subset of them. How to find a relevant subset efrécorded variables? We are
interested in finding regression equations whichamdy permit for a high clas-
sification accuracy in the training sample, but @pke to do it also for test sam-
ples, not used for training. After reducing theadtat fewer (hopefully relevant)
variables, it is easier to perform a more sophasgtid analysis, using, e.g. gene-
ralized discriminant analysis or/and kernel methosise e.g. Hastie et al.
(2010), Atkinson et al. (2004), Dgyowski and Krzyko (2010).

Next section (2) describes shortly teammo120 dataised for analysis.
Section 3 recalls the concept of ordinary leastasegiregression and shows the
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results of classification of the mammo120 data whsing the full set of vari-
ables. Search for relevant variables using#trs algorithm (Efron et al. 2004,
Hastie et al. 2010, &trand et al. 2006) is described in Section 4. dffieacy
of the models in classification the mammo120 data fwo classes (hormal and
cancer) is evaluated using the full regression made some selected sub-
models. The method of 5-fold cross—validation waedufor obtaining test
samples.

2. The mammogram data ‘mammo120 and their fractal signatures

In the following we will analyse a set of 120 mangrams taken from the
data base MIAS (Mammographic Image Analysis Sotietyailable at
http://peipa.essex.ac.uk/ipa/pix/mias. There aletaglether 322 mammogram
images, each of size024x1024 memorized in pmg (Paint Magic) format. The

images contain ‘normal breasts, i.e. without malformations, and ‘ab—ndtma

that is with distorted structure, like calcificatiobenign or malicious tumors.
The centers of the distortions and their radiusag be found in the description
of the data base.

We have taken from this source 12 normal mammogi@msoted in the
following as: ncncrjand 12 with malicious tumor (denoted in the follogias
cncr mammograms). This sample was augmented by vargimgenter of each
mammogram by 5 pixels up, down, left and rightsich a way, we got five
replicates of each sample, together 120 mammogfanfarther analysis. The
obtained set of mammograms will be in the followicgled mammo120 It
contains 60 normal and 60 cancer images. For fughalysis, a square frame
of 81x81 pixels was cut off from each mammogram accordmthe follow-
ing principle: (a) for ‘ab—normal’ mammograms timelicated center of distor-
tions was taken as the central pixel of the squ@)epr ‘normal’ mammograms
the center was chosen somehow arbitrarily, withatibempt to locate it in simi-
lar region as those used in the case (a) alfexemplary (square) frame from
the mammo120 set is shown in left exhibit of Feglir
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Fig. 1. A sample mammogram (m03). Left: as graphical &@wontaining a square image of size
81X 81 pixels. Right: The same image, viewed as texture

For each square frame, a fractal signature wi#8pcomponents was cal-
culated using the blanket algorithm (Peleg et @841 Biatek 2010). The neces-
sary software (in Matlab) was taken from Biatek¥@)) where also a prelimi-
nary analysis of 10 normal and 10 cancer mammograaysbe found. Apply-
ing Principal Component Analysis (PCA), he foundttthe first two Principal
Components (PCs) explain more than 95% of totabmae. When taking only
these two PCs, he found a linear discriminant ioncwith the effect of mis-
classifying one normal sample (small distortiortte# cell architecture, not yet
visible to the eye of the expert?) and one canaempte (wrongly recognized by
the expert?). The correct classification percentagmsed on the investigated
sample — was 90¢Biatek 2010)

Now, before starting the analysis, each signatuae standardized to have
zero mean and unit standard deviation. This hasdheequence that we have
only p=47 linearly independent variables. Twenty—four exemplfractal

signatures (12 ncnr and 12 cncr samples) are shrowigure 2.
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Signatures no. 1:5:120 from S120
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Fig. 2. Curves exhibiting fractal signatures for 12 ncawed 12 cncr images. Notice the rather
regular shape of the normal curves and the mucperisd shape of the cncr curves. Each curve
was row—-wise standardized to have zero mean andtanidard deviation

All the recorded signatures were put together anttata matrixX of size
120x 48. Because of the linear dependency of elementach eow, we have
dropped the last column to obtain the full ranknwaX of size120x47. This
matrix was supplemented with a label vegtaf size120x1 with values -1 or
+1 indicating the ncncr or cncr status of the retipe sample. The paifX,y)
will serve as the basis for analysis in next sesticGummarizing, the method of
fractal signatures allows for a representation afasa object (mammogram
characterized by81[ 81=6561 pixel values) by a numerical vector with
p =48 (or 47) components. It may be depicted as a tilmehaving the shape
of a curve, with time meaning subsequent stephebtanket algorithm. Exem-
plary curves for 24 mammograms are shown in Figure
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3. Full least squares regression

Theoretical frameworkSay, we have a set of training data in the form:

(X, Y1), (X,,¥,), ..., (Xy,Yy)- Each x, =(xil,xi2’...,xip) is a vector of

feature measurements for tHecase;y, is the observed output, called also

target or the dependent variable. The label vagigbl(i=1,..., N takes values
y, =—1 for ncncr, andy, =1 for cncr cases. The whole data may be put to-

gether as the pair(X,y), where X =(xij ), y=(y,). i=1...,N,
] =1...,p.. The classical theory of linear models assumas th

y=Xb+bh,+& (3.1)

where X, the data matrix, is assumed to be composed efifieal values,
b= (bl,...,bp) and b, are parameters of the model, a&= (51,...,£N) is a
vector of independent random errors with expectaldiesr equal to zero and

varianceo” for eachi.
The classical least squares (LS) minimization dateis defined as the Re-
sidual Sum of Squares (RSS) computed as the qiatan

RSb,b,) =(y - Xb -b,)" (y - Xb -b,) (3.2)

The LS minimization problem is to find the vectbr and the constantﬁ0
minimizing the quadratic formRSSb,b,) over all real values ob , b, .

It can be shown that the regression coefficidntand the constar‘c?)0 may
be obtained as

A~

b=(X"X)'X"y, B,=y-b'x (3.3)

where the ‘~' symbol means ‘mean—centereXl’ and v ; Y=(Yl,...,ip)T
denotes the vector of mean values of consecutilteress of the observed ma-
trix X. The Gramm matrix (XTX), called also the adjusted cross—product

matrix of the variables, should be of full rank.
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In the case wherX and y are columnwise centered to have means equal
zero, formula (3.3) simplifies to

A

b=(X"X)"X"y, b,=0 (3.4)
and the predicted values of the target varigbbre then obtained as:

y=Xb. (3.5)

The computationsTaking themammo120 datajiven as the pai(X,y) de-
scribed in Section 2, firstly the full LS regressimodel formulated in eq. (3.1)
was computed. Before starting the calculationsnta&ix X and the vectoy

were centered to have zero means. The Matlab iimetgres was used for the
regression calculations. Taking= 48, Matlab has issued the warning that the

cross—product matri>(XTX) is rank—deficient and is only of rank 47. Taking
p =47, there were no warnings. We got the estimatebefritercepty, andof

the regression coefficients of size 47x1 together with their 95% confidence
intervals. They are shown in Figure 3, top exhikit, the sequence
b,.b,,...,b,;. Notice that the estimated value mf equalsO and has a confi-

dence interval of widtlD. Notice also the remarkable oscillations of valoés
succeeding regression coefficients for lower arghéi No.s of the variables.

Sixteen confidence intervals do not enclose zero it is said in such a case

that these coefficients are statistically significat the 95% level, which means
that these coefficients may be considered as diftefrom zero.
Investigating the global dependency of the targdtiesy with its explana-

tory variables recorded in succeeding columns efdata matrix X we got
the multiple squared correlation coefficieRR equal to RR=0.8619, with

F =9.5569 and P <0.0001 The tested hypothesld, was: The population
squared multiple correlation coefficient of the siolered variables equals 0.
The performed test rejected decidedly that hypathdhis means that gene-
rally, the investigated predictors (the componeaitthe recorded fractal signa-
tures) have some power to predict the ncncr or class indicated iry , so we
are entitled to investigate further this topic, ésample to explore which con-
sidered variables contribute mostly to the statadetation.

Class assignementdlow exactly are the class assignments obtainetthdyes-
timated regression coefficients? The predicted esly, obtained from eq.
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(3.5) asy = Xb are shown in Figure 3, bottom exhibit. The firétiems from
the mammo120 data belonged to the ncncr class and/ = -1 as its target
value. Looking at the plot one may notice thatvallues )7' ,1=1... 60 are

negative. So the assignment by the constructe@ssmgn function was correct
for all the ncncr cases. The remaining 60 itemsrgd to the cncr class and

except one item (no. 84) got positige values. Again, the assignments to this

class were correct for all but one item. This coné our previous observations
that fractal signatures have some predictive pdarecancer diagnosis.

The high prediction accuracy shown in Figure 3tdratexhibit, sounds
very optimistic. However the golden principle inpeximental design is: firstly
derive some rule (prediction formula) using a ‘leag sample’, and then test
the derived rule (formula) using a different, sdlezh ‘test sample’. We have
used for this purpose cross—validation samples-{findd or two—fold cross—
validation) and stated that in the test sampleptldiction accuracy was about
80% (see Table 1), or lower. This was obtainedgrwapplying linear regres-
sion playing at the same time the role of a discramt function, which is the
simplest offer of pattern recognition methods fus tpurpose. There are other
methods, more sophisticated, reported to be mdeetefe, however they are
computationally more complex and expensive. So ske B it possible to re-
duce the set of predictors in our data, to makedthgnosis by more sophisti-
cated algorithms easier? The problem of selectisgnaller set of predictors
will be considered in next section.
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Fig. 3. Full least squares regressiomid7 variables fitted fromm=120 data points.
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Top: regression coefficients with 95% confidendeilivals. Sixteen regression coefficients are

statistically significant, which means that theg different from zero.

Bottom: assignment of mammograms to the non—cancarner class by the full linear
regression function. Only one item (from the caratass) is wrongly assigned to the non—cancer

4. Search for relevant variables using the LARS algithm

class

Introduction to tha ARS algorithm. Our goal is to find the variables (compo-

nents of signatures) that matter in establishireg ghediction of the ncncr or
cncr class. The predicting formula should haveftren of a sparse linear re-
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gression function, which means that not all pred&will enter as arguments of
the sought function. Traditionally this is done &ysubset search. With larger
number of variables this is done usually usingravéod search. There are many
variants of such algorithms (Atkinson et al. 206tgstie et al. 2010). We de-
cided to use for this purpose thar (Least Angle Regression) algorithm, as
proposed originally by Efron et al. 2004), see dftsstie et al. (2010LAR is
intimately connected with theasSO algorithm, which permits to control the L1
norm of the derived regression coefficients. ThelgimationLAR + LASSO got
the nameLARS. In the following we will use only theAR version of the algo-
rithm.

The LAR algorithm is a relative newcomer and represergsfacomputing
approach. In traditional algorithms, the selectadables enter hardly the active
variables set. On the opposite, th&R algorithm takes from a predictor “as
much as it deserves”. Description @RS taken from Hastie et al. (2010): “At
the first step it identifies the variable most etated with the response. Rather
than fit this variable completely\,AR moves the coefficient of this variables
continuously toward its least—-square value (causisgcorrelation with the
evolving residual to decrease in absolute valua).sédon, as another variable
‘catches up’ in terms of correlation with the regit] the process is paused. The
second variable then joins the active set, and tafficients are moved to-
gether in a way that keeps their correlations sied decreasing The process is
continued until all variables are in the model amdis at the full least-squares
fit.“ The result of the procedure appears as aeghowing the evolving path of
the values of the regression coefficients.

The LARS algorithm works in following steps (seeskia et al. 2010):

1. Standardize the predictors so to have mean zera@ihdorm. Define

the residual vector =y -y, with § denotingthe vectory evalu-

ated under the presently assumed regression maglelising the re-
gression coefficients {pbeing in the regression set. Assume at the

beginning thaty =b, =---=b, =0, which means that the regression
set is empty. Thely =0.
Find the predictoix ; most correlated witit .

3. Move bj from zero towards its LS coefficient computed frima sca-
lar product(xj ,r> until some other competitot, has as much cor-

relation with the current residual as daes. Notice, this is done by

inspecting the scalar products of the respectiviakes.
4. Move bj and b, in the direction defined by the LS regressionhsf t

current residual on (xj,xk) , until some competitoix, has as
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much correlation with the current residual — asabgent active va-
riables X;, X, . Retain the value®; and b, at this moment and use

them as the LS estimates computed from eq. (3kB)gas the matrix
X the columns of active variables at this step.

5. Continue in this way until alp predictors have been entered. After
min(N -1, p) steps, we arrive at the full least square regvessi

The LAR algorithm is believed to be more stable amute ‘democratic’, as
compared to the traditional forward search. Thereggjon coefficients and
fitted values are computed in a more cautious vy tusing LS algorithm
which is described as ‘greedy’. The authors (Efedral. 2004) elaborated an
efficient algorithm for computing the full path tife development of the regres-
sion coefficients and implemented it .nandR. The complexity is within the
range of the ordinary LS algorithm. A Matlab impkemtation by K. Skoglund
is available at http://www2.imm.dtu.dk/~ksjo/kas/software/index.htm
(Sjéstrand, 2006). We gratefully acknowledge the usthaft software for our
computing of theLAR regression using tHars function from that package.

Results of computationg.he LARS algorithm yielded the same full regression
coefficients as the LS method, — which was to bgeeted. Travelling towards
the final full solution fromk =0 (no variables in the active set) ko=47 (all
variables in the active set), the applied algorghmas produced (and retained)
in each step a sparse set of regression coefficidie sets were not identical
with those obtained by Matlaktepwise or stepwisefit procedures working
upwards. Moreover, not the same variables werectsgleby Skoglund‘dars
and Matlabstepwise functions. For example, among the active variables ob-
tained fork = 7, onlythreevariables were the same.

The conclusion from this part of analysis mightasefollows: The data al-
low for a good classification of its items into thencr and cncr classes. How-
ever this happens when testing the regression ieguay re—substitution’, that
is, using the same data. To obtain a reasonableatstof the prediction error,
one should test it using an independent samplataf. dhe following questions
were asked:

1. What are the generalization abilities of the olgdirfunction, when
tested on an independent sample? Does it dependtfre number of
the predictors included into the predictive equakio

2. Not all predictors are necessary for the predigtishich means that
with a smaller amount of them we may achieve (ygdne same goal.
Which variables are the most relevant and shoulshdaded into the
predictive set of variables?
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To answer these questions, a cross—validation emeet was performed.
We have used in the experiment the five—fold crealdation method (5 CV),
see e.g. Hastie et al. (2010) and obtained resiutan in Figure 4.
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Fig. 4. Residual Sum of Squares (RSS) from test partseoddita obtained by 5—fold
crossvalidation. Mean of the RSS with one standaxdation bounds is superimposed. Notice
that at the beginning, the RSS is declining — utité step numbée=5, then it remains flat, until
k=30, and next it rises quite sharply

The applied method proceeded as follows: The edtita was subdivided
into five non—overlapping parts; each of them s&pin turn as a test sample
for the regression calculated from the remaindehefdata. For each test sam-
ple the RSS (Residual Sum of Squares) was evalaateaich step of the LARS
algorithm. This resulted in five curves exhibititlte dependency of the RSS
statistics from the step number. The curves are/shio Figure 4.

The mammo120 data contained 60 ncncr and 60 csescdhis yielded at
each stage of the CV procedure 96 cases as traamgle and 24 cases as test
sample. Both samples were individually centeredefotte entering the LAR
algorithm. Each of the five curves in Figure 4 skdire RSS evaluated from 24
independent cases. The exhibited CV RSS curveagnihst the step number
(equal to the number of active variables of theialctegression equation + 1)
have a characteristic shape: firstly they are degaywhich means, that the
variables entering the active set of the regressiom really effective and they
reduce the error. Next, there is a period of stgbithe variables do not im-
prove the separability of the ncncr and cncr set¢sther deteriorate it. This



LARS REGRESSION IN DIAGNOSING MAMMOGRAMS... 85

happens for a range of approximately 25 additiormlables. Finally, when
introducing more variables, the error — in averagtarts to rise.
Each CV learning sample yielded at skehe sparse linear equation

y“(x) =bx, +bsx, +...+byX (4.1)

which, at stefk, contained at appropriate pladeson—zero regression coeffi-
cients b}‘ designated by the LARS algorithm, the remainingobeing by defi-

nition equal to zero. Using the above regressiamatgn (4.1), the expected
values y were calculated from (3.5). They served for classignments: cases

x producingpositivevalues of y(x) were classified as ‘cncr’; cases producing

non—positivevalues y(x) were classified as ‘ncncr’. Obviously, the number
correct classifications depends on the number dhbkesk in the regression
set. Takingk =[6,20,30,35,47], we obtained the percentages of correct classi-
fication shown in Table 1.

Table 1. Percentage of correct classification, when takingriables. Symbols CV1, CV2, CV3,
CV4, CV5 denote results from the five test sampleainbd by 5—fold cross—validation

k CVv1i CVv2 CV3 Cv4 CV5 average

6| 83.3333 83.3333 66.66G7 91.6667 91.6667 83.3333
20| 79.1667| 91.6667| 54.1667| 91.6667| 87.5000| 80.8333
30 | 87.5000| 83.3333| 45.8333| 91.6667| 83.3333] 78.3333
35| 87.5000| 83.3333| 41.6667| 95.8333| 83.3333| 78.3333
47| 95.8333| 83.3333| 37.5000| 87.5000| 70.8333| 75.0000

One may notice that the results in Table 1 aracicordance with the re-
sults shown in Figure 4. We got the answer for tiaesl. The prediction error
depends on the number of predictors taken for aiglA very moderate num-
ber of predictors produced the best results. Withidasing number of predic-
tors the qualitity of the prediction is deteriorgfi This result needs further
confirmation. What concerns th&2juestion: which are the best predictors, we
did not found a definite answer. It seems thattlier elaborated data the maxi-
mum is very flat and different variables may yie&$ults with similar predic-
tion quality.
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