PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
2014 | 23 | 6 |

Tytuł artykułu

Characteristics of preferential flow paths and their impact on nitrate nitrogen transport on agricultural land

Warianty tytułu

Języki publikacji

EN

Abstrakty

EN
Preferential flow is important for solute transport in soil. This study aims to investigate distribution characteristics of preferential flow paths in agricultural land and to determine the effects of preferential flow on nitrate nitrogen transport. Dye tracer experiments were conducted on two farmland plots in Changping County, Beijing. Two undisturbed soil columns (with preferential flow) and two packed soil columns (without preferential flow) were used to determine the influence of preferential flow on nitrate nitrogen transport. The results showed greater nitrate nitrogen movement with a relatively higher velocity in the undisturbed soil columns, which is on average 2.31 times of that in the packed soil column. The breakthrough time of undisturbed soil columns was 12 h with 43% reduction compared with that of the packed soil columns. The preferential transport of NO-3 in the undisturbed soil columns accounted for 43.83% of the total flux and resulted in a 97.60% accumulative leached mass for NO-3 of the total mass. These results indicated that the preferential flow with a limited total flux ratio could lead to a large proportion of NO-3 transport. Tailing phenomenon was observed and found to be a unique feature in the preferential flow’s breakthrough curve. Tailing might be caused by discrepancies between the preferential flow, matrix flow, and penetration rate during infiltration.

Słowa kluczowe

Wydawca

-

Rocznik

Tom

23

Numer

6

Opis fizyczny

p.1959-1964,fig.,ref.

Twórcy

autor
  • Key laboratory Laboratory of soil Soil and water Water Conservation, Beijing Forestry University, 35 Qinghua East Road, Haidian District, 100083, Beijing, China
autor
  • Key laboratory Laboratory of soil Soil and water Water Conservation, Beijing Forestry University, 35 Qinghua East Road, Haidian District, 100083, Beijing, China
autor
  • Institute of Desertification Studies, Chinese Academy of Forestry, 1958 P P.O. Box of Beijing 100091, China
autor
  • Key laboratory Laboratory of soil Soil and water Water Conservation, Beijing Forestry University, 35 Qinghua East Road, Haidian District, 100083, Beijing, China
autor
  • Key laboratory Laboratory of soil Soil and water Water Conservation, Beijing Forestry University, 35 Qinghua East Road, Haidian District, 100083, Beijing, China

Bibliografia

  • 1. MOONEY J.S., MORRIS C. A morphological approach to understanding preferential flow using image analysis with dye tracers and X-ray computed tomography. Catena, 73, (2), 204, 2008.
  • 2. LIPSIUS K., MONNEY S. J. Using image analysis of tracer staining to examine the infiltration patterns in a water repel­lent contaminated sandy soil. Geoderma. 136, 865, 2006.
  • 3. RONKANEN A., KLOVE B. Long-term phosphorus and nitrogen removal processes and preferential flow paths in Northern constructed peatlands. Ecol. Eng. 35, 843, 2009.
  • 4. REICHENBERGER S., AMELUNG W., LAABS V., PINTO A., TOTSCHE K.U., ZECH W. Pesticide displace­ment along preferential flow pathways in a Brazilian Oxisol. Geoderma. 110, 63, 2002.
  • 5. MALONE R.W., LOGSDON S., SHIPITALO M.J., WEATHERINGTON-RICE J., AHUJA L., MA L. Tillage effect on macroporosity and herbicide transport in percolate. Geoderma. 116, 191, 2003.
  • 6. BRUSSEAU M.L., RAO P.S.C. Modeling solute transport in structures soils: a review. Geoderma 46, 169, 1990.
  • 7. FLURY M., FLUHLER H., JURY W.A., LEUENBERGER J. Susceptibility of soils to preferential flow of water: A field study. Water Resour. Res. 30, 1945, 1994.
  • 8. BAVEYE P., BOAST C. W., OGAWA S., PARLANGE J.­Y., STEENHUIS T. Influence of image resolution and thresholding on the apparent mass fractal characteristics of preferential flow patterns in field soils. Water Resour. Res. 34, 2783, 1998.
  • 9. FORRER I., PAPRITZ A., KASTEEL R., FLUHLER H., LUCA D. Quantifying dye tracers in soil profiles by image processing. Eur. J. Soil Sci. 51, 313, 2000.
  • 10. ROSQVIST H., DESTOUNI G. Solute transport through preferential athways in municipal solid waste. J. Contam. Hydrol. 46, 39, 2000.
  • 11. ALLAIRE-LEUNG S.E., GUPTA S.C. MONCRIEF J.F. Water and solute movement in soil as influenced by macro­pore characteristics: 1. Macropore continuity. J. Contam. Hydrol., 41, (3-4), 283, 2000.
  • 12. OHRSTROM P., HAMED Y., PERSSON M., BERNDTS- SON R. Characterizing unsaturated solute transport by simultaneous use of dye and bromide. J. Hydrol. 289, 23, 2004.
  • 13. NIU J., YU X., ZHANG Z. Gongga Mountain's dark conif­erous forest ecosystem preferential flow of the solute migra­tion analysis. Journal of Beijing Forestry University, 31, (5), 48, 2009.
  • 14. PERKINS K. S., NIMMO J. R., MEDEIROS A. C. Effects of native forest restoration on soil hydraulic properties, Auwahi, Maui, Hwaiian Islands. Geophys. Res. Lett., doi: 10.1029/ 2012GL051120, 2012.
  • 15. CHEN X., PAN G., SHEN Q. The vertical transport of solute rule in the agricultural land of Taihu area. Chinese Environment Science, 21, (6), 481, 2001.
  • 16. CHENG J., ZHANG H., WANG W. Changes in preferential flow path distribution and its affecting factors in Southwest China. Soil Sci. 176, (12), 652, 2011.
  • 17. OGAWA S., BAVEVE P., BOAST C. W., PARLANGE J. Y., STEENHUIS T. Surface fractal characteristics of preferen­tial flow patterns in field soils: evaluation and effect of image processing. Geoderma. 88, 109, 1999.
  • 18. WANG Y., SONG X., DING Y., NIU R., ZHAO X., YAN D. The impact of influent mode on nitrogen removal in hori­zontal subsurface flow constructed wetlands: A simple analysis of hydraulic efficiency and nutrient distribution. Ecol. Eng. 60, 271, 2013.
  • 19. WEILER M., FLUHLER H. Inferring flow types from dye patterns in macroporous soils. Geoderma. 120, 137, 2004.
  • 20. KODESOVA R., NEMECEK K., KODES V., ZIGOVA A. Using dye tracer for visualization of preferenal flow at macroand microscales. Vadose Zone Journal. doi:10.2136/vzj.0088, 2011.
  • 21. MON J., FLURY M., HARSH J. B. Sorption of four triaryl- methane dyes in a sandy soil determined by batch and col­umn experiments. Geoderma. 133, 217, 2006.
  • 22. GERMANN P., HELBLING A. VADILONGA T. Rivulet approach to rates of preferential infiltration, Vadose Zone Journal. 6, 207, 2007.
  • 23. GARRETT T., ADAM S., ERICH T. Macropores as prefer­ential flow paths in meander bends. Hydrol. Process. DOI: 10.1002/hyp, 2012.
  • 24. HUANG M., SHAO M., WANG Q. Soil Physics. Beijing: Higher Education Press, pp. 29-34, 2006.
  • 25. WANG Y., BRADFORD S., SIMUNEK J. Transport and fate of microorganisms in soils with preferential flow under different solution chemistry conditions. Water Resour. Res. 49, (5), 2424, 2013. DOI: 10.1002/wrcr.20174,
  • 26. SUBRAMANIAN S., LI Y., CATHLES L. Assessing pref­erential flow by simultaneously injecting nanoparticle and chemical tracers. Water Resour. Res. 49, (1), 29, 2013. DOI: 10.1029/2012WR012148,
  • 27. ANAYA A., PADILLA I., MACCHIAVELLI R., VESPER D., MEEKER J., ALSHAWABKEH A. Estimating Preferential Flow in Karstic Aquifers Using Statistical Mixed Models. Groundwater DOI: 10.1111/gwat.12084, 2013.

Uwagi

rekord w opracowaniu

Typ dokumentu

Bibliografia

Identyfikatory

Identyfikator YADDA

bwmeta1.element.agro-46f5b28a-442f-4b3d-add6-f29acfdaa443
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.