PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
2014 | 63 | 4 |

Tytuł artykułu

Synthetic amphibian peptides and short amino-acids derivatives against planktonic cells and mature biofilm of providencia stuartii clinical strains

Warianty tytułu

Języki publikacji

EN

Abstrakty

EN
Over the last decade, the growing number of multidrug resistant strains limits the use of many of the currently available chemotherapeutic agents. Furthermore, bacterial biofilm, due to its complex structure, constitutes an effective barrier to conventional antibiotics. The in vitro activities of naturally occurring peptide (Citropin 1.1), chemically engineered analogue (Pexiganan), newly-designed, short amino-acid derivatives (Pal-KK-NH₂, Pal-KKK-NH₂, Pal-RRR-NH₂) and six clinically used antimicrobial agents (Gatifloxacin, Ampicilin, Cefotaxime, Ceftriaxone, Cefuroxime and Cefalexin) were investigated against planktonic cells and mature biofilm of multidrug-resistant Providencia stuartii strains, isolated from urological catheters. The MICs, MBCs values were determined by broth microdilution technique. Inhibition of biofilm formation by antimicrobial agents as well as biofilm susceptibility assay were tested using a surrogate model based on the Crystal Violet method. The antimicrobial activity of amino-acids derivatives and synthetic peptides was compared to that of clinically used antibiotics. For planktonic cells, MICs of peptides and antibiotics ranged between 1 and 256 μg/ml and 256 and ≥ 2048 μg/ml, respectively. The MBCs values of Pexiganan, Citropin 1.1 and amino-acids derivatives were between 16 and 256 μg/ml, 64 and 256 μg/ml and 16 and 512 μg/ml, respectively. For clinically used antibiotics the MBCs values were above 2048 μg/ml. All of the tested peptides and amino-acids derivatives, showed inhibitory activity against P. stuartii biofilm formation, in relation to their concentrations. Pexiganan and Citropin 1.1 in concentration range 32 and 256 μg/ml caused both strong and complete suppression of biofilm formation. None of the antibiotics caused complete inhibition of biofilm formation process. The biofilm susceptibility assay verified the extremely poor antibiofilm activity of conventional antibiotics compared to synthetic peptides. The obtained results showed that synthetic peptides are generally more potent and effective than clinically used antibiotics.

Słowa kluczowe

Wydawca

-

Rocznik

Tom

63

Numer

4

Opis fizyczny

p.423-431,fig.,ref.

Twórcy

autor
  • Department of Immunobiology of Bacteria, Institute of Microbiology, Biotechnology and Immunology, University of Lodz, Lodz, Poland
autor
  • Department of Inorganic Chemistry, Faculty of Pharmacy, Medical University of Gdansk, Gdansk, Poland
  • Lipopharm.pl, Zblewo, Poland
autor
  • Department of Inorganic Chemistry, Faculty of Pharmacy, Medical University of Gdansk, Gdansk, Poland
autor
  • Department of Immunobiology of Bacteria, Institute of Microbiology, Biotechnology and Immunology, University of Lodz, Lodz, Poland

Bibliografia

  • Baltzer S.A. and M.H. Brown. 2011. Antimicrobial peptides – promising alternatives to conventional antibiotics. J. Mol. Microbiol. Biotechnol. 20: 228–235.
  • Cederlund A., G.H. Gudmundsson and B. Agerberth. 2011. Antimicrobial peptides important in innate immunity. FEBS Journal 278: 3942–3951.
  • Chapman C.M.C.,G.R. Gibson and I. Rowland. 2014. Effect of single- and multi-strain probiotics on biofilm formation and in vitro adhesion to bladder cells by urinary tract pathogens. Anaerobe, http://dx.doi.org/10.1016/j.anaerobe.2014.02.001.
  • Clinical and Laboratory Standard Institute (CLSI). 2013. Performance standards for antimicrobial susceptibility testing; Twenty-third informational supplement M100-S23 (ISBN 1-56238-865-7 (M100-S23).
  • Cohen J. 2002. The immunopathogenesis of sepsis. Nature 420: 885–891.
  • Dean S.N., B.M. Bishop and M.L. Hoek. 2011. Natural and synthetic cathelicidin peptides with anti-microbial and anti-biofilm activity against Staphylococcus aureus. BMC Microbiology 11:114.
  • Ding Y., W.Wang, M. Fan, Z. Tong and R. Kuang. 2014. Antimicrobial and anti-biofilm effect of Bac8c on major bacteria associated with dental caries and Streptococcus mutans biofilms. Peptides 52: 61–67.
  • Flemming K., C. Klingenberg, J.P. Cavanagh, M. Sletteng M., W. Stensen, J.S. Svendsen and T. Flægstad. 2009. High in vitro antimicrobial activity of synthetic antimicrobial peptidomimetics against staphylococcal biofilm. J. Antimicrob. Chemother. 63: 136–145.
  • Gee K., M. Kozlowski and A. Cumar. 2003. Tumor necrosis factor-alpha induces functionally active hyaluronan-adhesive CD44 by activating sialidase through p38 mitogen-activated protein kinase in lipopolysaccharide-stimulated human monocytic cells. J. Biol. Chem. 278: 37275–37287.
  • Giacometti A., O. Cirioni, W. Kamysz, C. Silvestri, A. Licci,A. Riva, J. Lukasiak and G. Scalise. 2005. In vitro activity of amphibian peptides alone and in combination with antimicrobial agents against multidrug-resistant pathogens isolated from surgical wound infection. Peptides 26: 2111–2116.
  • Gottler L. M. and A. Ramamoorthy. 2009. Structure, membrane orientation, mechanism and function of Pexiganan – a highly potent antimicrobial peptide designed from Magainin. Biochim. Biophys. Acta 1788(8): 1680–1686.
  • Gruenheid S. and H. Le Moual. 2012. Resistance to antimicrobial peptides in Gram-negative bacteria. FEMS Microbiol. Lett. 330: 81–89.
  • Hall-Stoodley L. and P. Stoodley . 2009. Evolving concepts in biofilm infections. Cellular Microbiology 11 (7): 1034–1043.
  • Jiang X., D. Abgottspon, S. Kleeb, S. Rabbani, M. Scharenberg, M. Wittwer, M. Haug, O. Schwardt and B. Ernst. 2012. Antiadhesion therapy for urinary tract infections a balanced PK/PD profile proved to be key for success. J. Med. Chem. 55 (10): 4700–4713.
  • Kupilas A. 2010. Przewlekłe zakażenia układu moczowego. Przegląd Urologiczny 5 (63).
  • Lohner K. and S.E. Blondelle. 2005. Molecular mechanisms of membrane perturbation by antimicrobial peptides and the use of biophysical studies in the design of novel peptide antibiotics. Comb. Chem. High Throughput Screen 8: 241–256.
  • Mangoni M.L., R.F. Epand, Y. Rosenfeld, A. Peleg, D. Barra, R.M. Epand and Y. Shai. 2008. Lipopolysaccharide, a key molecule involved in the synergism between Temporins in inhibiting bacterial growth and endotoxin neutralization. JBC 283(34): 22907–22917.
  • Mataraci E. and S. Dosler. 2012. In vitro activities of antibiotics and antimicrobial cationic peptides alone and in combination against methicillin-resistant Staphylococcus aureus biofilm. Antimicrob. Agents Chemother. 56(12): 6366–6371.
  • Meng S., H. Xu and F. Wang. 2011. Research advances of antimicrobial peptides and applications in food industry and agriculture. Curr. Protein Pept. Sci. 11(4): 264–273.
  • Mukhopadhyay S., J. Herre, G.D. Brown and S. Gordon. 2004. The potential for toll-like receptors to collaborate with other innate immune receptors. Immunology 112 (4): 521–530.
  • Nicolas P. 2009. Multifunctional host defence peptides: intracellular-targeting antimicrobial peptides. FEBS Journal 276: 6483–6496.
  • Ostrowska K., A. Strzelczyk, A. Rozalski and P. Staczek. 2013. Bacterial biofilm as a cause of urinary tract infection – pathogens, methods of prevention and eradication. Postępy Hig. Med. Dosw. 67: 1027–1033.
  • Park S.Ch., Y. Park and K.S. Hahm. 2011. The role of antimicrobial peptides in preventing multidrug-resistant bacterial infections and biofilm formation. Int. J. Mol. Sci. (12): 5971–5992.
  • Pinheiro da Silva F. and M.C. Machado. 2012. Antimicrobial peptides: clinical relevance and therapeutic implications. Peptides 36(2): 308–314.
  • Wakimoto N., J. Nishi, J. Sheikh et al. 2004. Quantitative biofilm assay using a microtiter plate to screen for enteroaggregative Escherichia coli. Am. J. Trop. Med. Hyg. 71: 687–690.
  • Zhang L., J. Parente, S.M. Harris, D.E. Woods, R.E.W. Hancock and T.J. Falla. 2005. Antimicrobial peptide therapeutics for cystic fibrosis. Antimicrob. Agents Chemother. 49(7): 2921–2927.
  • Zyłowska M., A. Wyszynska and E.K. Jagusztyn-Krynicka. 2011. Defensyny – peptydy o aktywności przeciwbakteryjnej. Post. Mikrobiol. 5(3): 223–234.

Typ dokumentu

Bibliografia

Identyfikatory

Identyfikator YADDA

bwmeta1.element.agro-46ead843-1f11-4580-b78e-7a3b31fe95bb
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.