PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
2018 | 27 | 2 |

Tytuł artykułu

Soil microbial community composition in four nothotsuga longibracteata forests in southern China

Warianty tytułu

Języki publikacji

EN

Abstrakty

EN
Soil microbial communities play a vital role in soil carbon and carbon sequestration in forest ecosystems. In this study, soils were sampled in Tianbaoyan National Nature Reserve in southeastern China from four Nothotsuga longibracteata forests, including a pure N. longibracteata forest (NF), N. longibracteata + hardwood mixed forest (NHF), N. longibracteata + Rhododendron simiarum mixed forest (NRF), and N. longibracteata + Phyllostachys pubescens mixed forest (NPF). Our objective was to precisely quantify soil physicochemical properties, microbial biomass, microbial communities, and to evaluate their interrelationships. We used biochemical measurements, a fumigation-extraction method, and phospholipid fatty acid (PLFA) analysis method to show that – except for pH and soil bulk density (SBD) – soil physicochemical properties differed markedly among the forest types. Microbial biomass carbon (MBC) and nitrogen (MBN) were highest in NHF soils, while the ratio of microbial biomass carbon to nitrogen (MBC:MBN) was highest in NRF and NPF soils. Moreover, the microbial communities of the four forest types exhibited distinct profiles: the highest total PLFA content and content of Grampositive bacteria (Gram(+)), Gram-negative bacteria(Gram(-)), and fungi were found in NRF. Additionally, NHF soil exhibited the highest actinomycetes content, while the highest protozoal content was found in NF soil. The analysis of individual PLFAs using principal component analysis (PCA) demonstrated a clear association of distinct soil PFLA characteristics for each forest type. In conclusion, the soil microbial community structure can be significantly influenced by changes in soil organic carbon (SOC) and MBN. Comparing soil microbial properties in different N. longibracteata forests can help us understand the influence of forest types on the structure of microbiota within a system.

Słowa kluczowe

Wydawca

-

Rocznik

Tom

27

Numer

2

Opis fizyczny

P.917-925,fig.,ref.

Twórcy

autor
  • College of Forestry, Fujian Agriculture and Forestry University, Fuzhou 350002, Fujian Province, China
  • Guangdong Provincial Key Laboratory of Silviculture, Protection and Utilization/Guangdong Academy of Forestry, Guangzhou 510520, Guangdong Province, China
autor
  • Guangdong Provincial Key Laboratory of Silviculture, Protection and Utilization/Guangdong Academy of Forestry, Guangzhou 510520, Guangdong Province, China
autor
  • College of Forestry, Fujian Agriculture and Forestry University, Fuzhou 350002, Fujian Province, China
autor
  • College of Forestry, Fujian Agriculture and Forestry University, Fuzhou 350002, Fujian Province, China
autor
  • The Management Authority of Tianbaoyan National Nature Reserve, Yong’an 366032, Fujian Province, China
autor
  • The Management Authority of Tianbaoyan National Nature Reserve, Yong’an 366032, Fujian Province, China
autor
  • College of Forestry, Fujian Agriculture and Forestry University, Fuzhou 350002, Fujian Province, China
autor
  • College of Forestry, Fujian Agriculture and Forestry University, Fuzhou 350002, Fujian Province, China
autor
  • College of Forestry, Fujian Agriculture and Forestry University, Fuzhou 350002, Fujian Province, China

Bibliografia

  • 1. YOU H.M., HE D.J., YOU W.B., LIU J.S., CAI C.T. Effect of Environmental Gradients on the Quantity and Quality of Fallen Logs in Tsuga longibracteata Forest in Tianbaoyan National Nature Reserve, Fujian Province, China. Journal of Mountain Science. 10, 1118, 2013.
  • 2. QIU Y.J., LIU Y.F., KANG M., YI G.M., HUANG H.W. Spatial and temporal population genetic variation and structure of Nothotsuga longibracteata (Pinaceae), a relic conifer species endemic to subtropical China. Genetics and Molecular Biology. 36, 598, 2013.
  • 3. FARJON A., CHRISTIAN T., ZHANG D. Nothotsuga longibracteata. The IUCN Red List of Threatened Species. Version 2016-1. 2013. . Accessed on 14 August 2016.
  • 4. YOU H.M., HE D.J., CAI C.T., LIU J.S., HONG W., YOU W.B., WANG L., XIAO S.H., HU J., ZHENG X.Y. Assessment on Effect of Fallen Woods on Soil Fertility in Tsuga longibracteata Forest in Tianbaoyan National Nature Reserve. Chinese Journal of Applied and Environmental Biology. 19, 168, 2013 [In Chinese].
  • 5. YOU H.M., HE D.J., LIU J.S., CAI C.T., YOU W.B., XIAO S.H. Effect of covering with fallen logs on soil physicochemical property of Tsuga longibracteata forest in Tianbaoyan National Nature Reserve. Journal of Plant Resources and Environment. 22, 18, 2013 [In Chinese].
  • 6. XIAO S.H., YOU H.M., YOU W.B., LIU J.S., CAI C.T., WU J.Q., JI Z.R., ZHAN S.H., HU Z.S., ZHANG Z.R., HE D.J. Rhizosphere and bulk soil enzyme activities in a Nothotsuga longibracteata, forest in the Tianbaoyan National Nature Reserve, Fujian Province, China. Journal of Forestry Research. 28, 521, 2017.
  • 7. CAO Y.S., FU S.L., ZOU X.M., CAO H.L., SHAO Y.H., ZHOU L.X. Soil microbial community composition under Eucalyptus plantations of different age in subtropical China. European Journal of Soil Biology. 46, 128, 2010.
  • 8. DRAKE J.E., GALLET-BUDYNEK A., HOFMOCKEL K.S., BERNHARDT E.S., BILLINGS S.A., JACKSON R.B., JOHNSEN K.S., LICHTER J., MCCARTHY H.R., MCCORMACK M.L., MOORE D.J., OREN R., PALMROTH S., PHILLIPS R.P., PIPPEN J.S., PRITCHARD S.G., TRESEDER K.K., SCHLESINGER W.H., DELUCIA E.H., FINZI A.C. Increases in the flux of carbon belowground stimulate nitrogen uptake and sustain the long-term enhancement of forest productivity under elevated CO₂. Ecology Letters. 14, 349, 2011.
  • 9. SIMPSON A.J., SIMPSON M.J., SMITH E., KELLEHER B.P. Microbially derived inputs to soil organic matter: Are current estimates too low?. Environmental Science and Technology. 41, 8070, 2007.
  • 10. CHAPARRO J.M., SHEFLIN A.M., MANTER D.K., VIVANCO J.M. Manipulating the soil microbiome to increase soil health and plant fertility. Biology and Fertility of Soils. 48, 489, 2012.
  • 11. HU L., XIANG Z.Y., WANG G.X., RAFIQUE R., LIU W., WANG C.T. Changes in soil physicochemical and microbial properties along elevation gradients in two forest soils. Scandinavian Journal of Forest Research. 31, 1, 2016.
  • 12. CHENG F., PENG X.B., ZHAO P., YUAN J., ZHONG C.G., CHENG Y.L., CUI C., ZHANG S.X. Soil microbial biomass, basal respiration and enzyme activity of main forest types in the Qinling Mountains. PLoS One. 8, e67353, 2013.
  • 13. GELSOMINO A., KEIJZER-WOLTERS A.C., CACCO G., VAN ELSAS J.D. Assessment of bacterial community structure in soil by polymerase chain reaction and denaturing gradient gel electrophoresis. Journal of Microbiological Methods. 38, 1, 1999.
  • 14. CAI Y.F., BARBER P., DELL B., O’BRIEN P., WILLIAMS N., BOWEN B., HARDY G. Soil bacterial functional diversity is associated with the decline of Eucalyptus gomphocephala. Forest Ecology and Management. 260, 1047, 2010.
  • 15. FRANCISCO R., STONE D., CREAMER R.E., SOUSA J.P., MORAIS P.V. European scale analysis of phospholipid fatty acid composition of soils to establish operating ranges. Applied Soil Ecology, 97, 49, 2015.
  • 16. PIOTROWSKA-SEGET, MROZIK A. Signature lipid biomarker (SLB) analysis in determining changes in community structure of soil microorganisms. Polish Journal of Environmental Studies. 12, 669, 2003.
  • 17. HEBEL C.L., SMITH J.E., CROMACK K. Invasive plant species and soil microbial response to wildfire burn severity in the Cascade Range of Oregon. Applied Soil Ecology. 42, 150, 2009.
  • 18. VANCE E.D., BROOKES P.C., JENKINSON D.S. An extraction method for measuring soil microbial biomass C. Soil Biology and Biochemistry. 19, 703, 1987.
  • 19. PANDEY C.B., SINGH G.B., SINGH S.K., SINGH R.K. Soil nitrogen and microbial biomass carbon dynamics in native forests and derived agricultural land uses in a humid tropical climate of India. Plant and Soil. 333, 453, 2010.
  • 20. JENKINSON D.S., BROOKES P.C., POWLSON D.S. Measuring soil microbial biomass. Soil Biology and Biochemistry. 36, 5, 2004.
  • 21. DENEF K., BUBENHEIM H., LENHART K., VERMEULEN J., VAN CLEEMPUT O., BOECKX P., MÜLLER C. Community shifts and carbon translocation within metabolically-active rhizosphere microorganisms in grasslands under elevated CO₂. Biogeosciences Discussions. 4, 769, 2007.
  • 22. WU L.K., LI Z.F., LI J., KHAN M.A., HUANG W.M., ZHANG Z.Y., LIN W.X. Assessment of shifts in microbial community structure and catabolic diversity in response to Rehmannia glutinosa monoculture. Applied Soil Ecology. 67, 1, 2013.
  • 23. KIMURA M., ASAKAWA S. Comparison of community structures of microbiota at main habitats in rice field ecosystems based on phospholipid fatty acid analysis. Biology and Fertility of Soils. 43, 20, 2006.
  • 24. JOHANSEN A., OLSSON S. Using Phospholipid Fatty Acid Technique to Study Short-Term Effects of the Biological Control Agent Pseudomonas fluorescens DR54 on the Microbial Microbiota in Barley Rhizosphere. Microbial Ecology. 49, 272, 2005.
  • 25. HUYGENS D., SCHOUPPE J., ROOBROECK D., ALVAREZ M., BALOCCHI O., VALENZUELA E., PINOCHET D., BOECKX P. Drying-rewetting effects on N cycling in grassland soils of varying microbial community composition and management intensity in south central Chile. Applied Soil Ecology. 48, 270, 2011.
  • 26. ALIASGHARZAD N., MÅRTENSSON L.M., OLSSON P.A. Acidification of a sandy grassland favours bacteria and disfavours fungal saprotrophs as estimated by fatty acid profiling. Soil Biology and Biochemistry. 42, 1058, 2010.
  • 27. CUI H.J., WANG G.X., YANG Y., YANG Y., CHANG R.Y., RAN F. Soil microbial community composition and its driving factors in alpine grasslands along a mountain elevational gradient. Journal of Mountain Science. 13, 1013, 2016.
  • 28. KRAMER C., GLEIXNER G. Soil organic matter in soil depth profiles: Distinct carbon preferences of microbial groups during carbon transformation. Soil Biology and Biochemistry. 40, 425, 2008.
  • 29. HUANG Y.M., LIU D., AN S.S. Effects of slope aspect on soil nitrogen and microbial properties in the Chinese Loess region. Catena. 125, 135, 2015.
  • 30. WEI H., XIAO G.L., GUENET B., JANSSENS I.A., SHEN W.J. Soil microbial community composition does not predominantly determine the variance of heterotrophic soil respiration across four subtropical forests. Scientific Reports. 5, 7854, 2015.
  • 31. ZHOU Y., CLARK M., SU J., XIAO C.W. Litter decomposition and soil microbial community composition in three Korean pine (Pinus koraiensis) forests along an altitudinal gradient. Plant and Soil. 386, 171, 2015.
  • 32. SINGH S., GHOSHAL N., SINGH K.P. Variations in soil microbial biomass and crop roots due to differing resource quality inputs in a tropical dryland agroecosystem. Soil Biology and Biochemistry. 39, 76, 2007.
  • 33. MATHEW R.P., FENG Y.C., GITHINJI L., ANKUMAH R., BALKCOM K.S. Impact of No-Tillage and Conventional Tillage Systems on Soil Microbial Communities. Applied and Environmental Soil Science. 1, 2012.
  • 34. HERMAN D.J., FIRESTONE M.K., NUCCIO E., HODGE A. Interactions between an arbuscular mycorrhizal fungus and a soil microbial community mediating litter decomposition. Fems Microbiology Ecology. 80, 236, 2012.
  • 35. CHEN D.M., ZHOU L.X., WU J.P., HSU J., LIN Y.B., FU S.L. Tree girdling affects the soil microbial community by modifying resource availability in two subtropical plantations. Applied Soil Ecology. 53, 108, 2012.
  • 36. CHANG E.H., CHEN C.T., CHEN T.H., CHIU C.Y. Soil microbial communities and activities in sand dunes of subtropical coastal forests. Applied Soil Ecology, 49, 256, 2011.
  • 37. ALLISON V.J., MICHAEL MILLER R., JASTROW J.D., MATAMALA R., ZAK D.R. Changes in Soil Microbial Community Structure in a Tallgrass Prairie Chronosequence. Soil Science Society of America Journal. 69, 1412, 2005.

Typ dokumentu

Bibliografia

Identyfikatory

Identyfikator YADDA

bwmeta1.element.agro-46d85eeb-64ac-42f7-a480-39b1adca04ee
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.