PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
2015 | 17 | 1 |

Tytuł artykułu

Sexual size dimorphism of a sensory structure in a monomorphic bat

Warianty tytułu

Języki publikacji

EN

Abstrakty

EN
As a strategy to reserve energy for parental care, females are larger than males in most bat species. Although females are responsible for providing parental care in almost all (if not all) bats, there are some species in which the males are larger than the females, and in other species the sexes are similarly sized. It has been proposed that for non dimorphic bat species, some foraging traits might be responsible for the differences observed between the sexes, though, this hypothesis has not been tested formally. Here, we evaluate the sexual size dimorphism of the phyllostomid insectivorous bat Gardnerycteris crenulatum using the morphometric variables of body size and nose-leaf size; the latter is a functional structure that plays an important role in echolocation and determines insectivorous bats‘ effectiveness in foraging. Our results show that G. crenulatum is a sexually monomorphic species in terms of body size, but it is dimorphic in nose-leaf traits. Females exhibit larger nose-leaves than males, which could increase the directionality of their ultrasound emission and hence improve the females‘ ability to obtain sensory information. We propose that monomorphic bats could be dimorphic for functional structures related to foraging behaviour as a means to increase their energetic effectiveness.

Słowa kluczowe

Wydawca

-

Rocznik

Tom

17

Numer

1

Opis fizyczny

p.75-83,fig.,ref.

Twórcy

autor
  • Doctorado en Ciencias, Mencion Ecologia y Evolucion, Facultad de Ciencias, Universidad Austral de Chile, Valdivia, Chile
  • Departamento de Mastozoología, Museo de Historia Natural de la Universidad Nacional Mayor de San Marcos, Lima, Peru
  • Instituto de Ciencias Ambientales y Evolutivas, Facultad de Ciencias, Universidad Austral de Chile, Valdivia, Chile
autor
  • Departamento de Mastozoología, Museo de Historia Natural de la Universidad Nacional Mayor de San Marcos, Lima, Peru
  • Facultad de Ciencias Biologicas, Universidad Nacional Mayor de San Marcos, Lima, Peru

Bibliografia

  • 1. M. J. Anderson 2001. A new method for non-parametric multi variate analysis of variance. Austral Ecology, 26: 32–46. Google Scholar
  • 2. M. J. Anderson , R. N. Gorley , and K. R. Clarke . 2008. PERMANOVA+ for PRIMER: guide to software and statistical methods. PRIMER-E, Plymouth. Google Scholar
  • 3. H. T. Arita 1990. Noseleaf morphology and ecological correlates in phyllostomid bats. Journal of Mammalogy, 71: 36–47. Google Scholar
  • 4. W. Bogdanowicz , R. D. Csada , and M. B. Fenton . 1997. Structure of noseleaf, echolocation, and foraging behavior in the Phyllostomidae (Chiroptera). Journal of Mammalogy, 78: 942–953. Google Scholar
  • 5. R. Bornholdt , L. R. Oliveira , and M. E. FabiÁN . 2008. Sexual size dimorphism in Myotis nigricans (Schinz, 1821) (Chiroptera: Vespertilionidae) from south Brazil. Brazilian Journal of Biology, 68: 897–904. Google Scholar
  • 6. N. F. Camargo , and H. F. M. De Oliveira . 2012. Sexual dimorphism in Sturnira lilium (Chiroptera, Phyllostomidae): can pregnancy and pup carrying be responsible for differences in wing shape? PLoS ONE, 7: e49734. Google Scholar
  • 7. K. R. Clarke , and R. N. Gorley . 2006. PRIMER v6: user manual/tutorial. PRIMER-E, Plymouth. Google Scholar
  • 8. T. H. Clutton-Brock 1991. The evolution of parental care. Princeton University Press, Princeton, New Jersey, 352 pp. Google Scholar
  • 9. L. M. Dávalos , P. M. Velazco , O. M. Warsi , P. D. Smits , and N. B. Simmons . 2014. Integrating incomplete fossils by isolating conflicting signal in saturated and non-independent morphological characters. Systematic Biology, 63: 582–600. Google Scholar
  • 10. L. Feng , L. Gao , H. Lu , and R. Müller . 2012. Noseleaf dynamics during pulse emission in horseshoe bats. PLoS ONE, 7: e34685. Google Scholar
  • 11. N. P. Giannini , and E. K. V. Kalko . 2005. The guild structure of animalivorous leaf-nosed bats of Barro Colorado Island, Panama, revisited. Acta Chiropterologica, 7: 131–146. Google Scholar
  • 12. M. E. Grilliot , S. C. Burnett , and M. T. Mendonça . 2009. Sexual dimorphism in big brown bat (Eptesicus fuscus) ultrasonic vocalizations is context dependent. Journal of Mammalogy, 90: 203–209. Google Scholar
  • 13. M. E. Grilliot , S. C. Burnett , and M. T. MendonÇA . 2014. Sex and season differences in the echolocation pulses of big brown bats (Eptesicus fuscus) and their relation to mating activity. Acta Chiropterologica, 16: 379–386. Google Scholar
  • 14. D. J. Hartley , and R. A. Suthers . 1987. The sound emission pattern and the acoustical role of the noseleaf in the echolocating bat, Carollia perspicillata. The Journal of the Ac oustical Society of America, 82: 1892–1900. Google Scholar
  • 15. C. F. Herreid 1959. Sexual dimorphism in teeth of the freetailed bat. Journal of Mammalogy, 40: 538–541. Google Scholar
  • 16. N. Hurtado , and V. Pacheco . 2014. Análisis filogenético del género Mimon Gray, 1847 (Mammalia, Chiroptera, Phyllostomidae) con la descripción de un nuevo género. Therya, 5: 751–791. Google Scholar
  • 17. N. Hurtado , E. Arias , and V. Pacheco . 2014. Redescription of Mimon koepckeae (Chiroptera: Phyllostomidae). Zoologia, 31: 377–388. Google Scholar
  • 18. J. K. Jones Jr. , H. H. Genoways , and R. J. Baker . 1971. Morphological variation in Stenoderma rufum. Journal of Mammalogy, 52: 244–247. Google Scholar
  • 19. K. F. Koopman 1978. Zoogeography of Peruvian bats with special emphasis on the role of the Andes. American Museum Novitates, 2651: 1–33. Google Scholar
  • 20. R. Kuc 1994. Sensorimotor model of bat echolocation and prey capture. Journal of the Acoustical Society of America, 96: 1965–1978. Google Scholar
  • 21. R. Kuc 2010. Morphology suggests noseleaf and pinnae cooperate to enhance bat echolocation. Journal of the Acoustical Society of America, 128: 3190–3199. Google Scholar
  • 22. R. Kuc 2011. Bat noseleaf model: echolocation function, design considerations, and experimental verification. Journal of the Acoustical Society of America, 129: 3361–3366. Google Scholar
  • 23. T. H. Kunz , and W. R. Hood . 2000. Parental care and postnatal growth in the Chiroptera. Pp. 415–468, in Reproductive biology of bats ( E. G. Crichton and P. H. Krutzsch , eds.). Academic Press, San Diego, CA, USA, x + 507 pp. Google Scholar
  • 24. C. J. Marinkelle , and A. Cadena . 1971. Remarks on Sturnira tildae in Colombia. Journal of Mammalogy, 52: 235–237. Google Scholar
  • 25. M. A. Matthias , M. M. Díaz , K. J. Campos , M. Calderon , M. R. Willig , V. Pacheco , E. Gotuzzo , R. H. Gilman , and J. M. Vinetz . 2005. Diversity of bat-associated Leptospira in the Peruvian Amazon inferred by bayesian phylogenetic analysis of 16S ribosomal DNA sequences. The American Journal of Tropical Medicine and Hygiene, 73: 964–974. Google Scholar
  • 26. M. A. R. Mello , and A. Pol . 2006. First record of the bat Mimon crenulatum (E. Geoffroy, 1801) (Mammalia: Chiroptera) in the state of Rio de Janeiro, Southeastern Brazil. Brazilian Journal of Biology, 66: 295–299. Google Scholar
  • 27. P. Myers 1978. Sexual dimorphism in size of vespertilionid bats. The American Naturalist, 112: 701–711. Google Scholar
  • 28. D. W. Nagorsen , and R. L. Peterson . 1980. Mammal collectors' manual. Life Sciences Miscellaneous Publications of Royal Ontario Museum, Ontario, 79 pp. Google Scholar
  • 29. U. M. Norberg , and J. M. V. Rayner . 1987. Ecological morphology and flight in bats (Mammalia; Chiroptera): wing adaptations, flight performance, foraging strategy and echolocation. Philosophical Transactions of the Royal Society of London, 316B: 335–427. Google Scholar
  • 30. S. C. Pedersen , and R. Müller . 2013. Nasal-emission and nose leaves. Pp. 71–92, in Bat evolution, ecology, and conservation ( R. A. Adams and S. C. Pedersen , eds.). Springer Science & Business Media, New York, USA, x + 549 pp. Google Scholar
  • 31. W. A. Pedro , C. A. K. Komeno , and V. A. Taddei . 1994. Morph ometrics and biological notes on Mimon crenulatum (Chiroptera, Phyllostomidae). Boletim do Museu Paraense, Emílio Goeldi, 10: 107–112. Google Scholar
  • 32. S. J. Puechmaille , I. M. Borissov , S. Zsebok , B. Allegrini , M. Hizem , S. Kuenzel , M. Schuchmann , E. C. Teeling and B. M. Siemers . 2014. Female mate choice can drive the evolution of high frequency echolocation in bats: a case study with Rhinolophus mehelyi. PLoS ONE, 9: e103452. Google Scholar
  • 33. G. P. Quinn , and M. J. Keough . 2002. Experimental design and data analysis for biologists. Cambridge University Press, Cambridge, 537 pp. Google Scholar
  • 34. K. Ralls 1976. Mammals in which females are larger than males. The Quarterly Review of Biology, 51: 245–276. Google Scholar
  • 35. K. Ralls 1977. Sexual dimorphism in mammals: Avian models and unanswered questions. The American Naturalist, 111: 917–938. Google Scholar
  • 36. M. F. Robinson 1996. A relationship between echolocation calls and noseleaf widths in bats of the genera Rhinolophus and Hipposideros. Journal of Zoology (London), 239: 389–393. Google Scholar
  • 37. H.-U. Schnitzler , and E. K. V. Kalko . 2001. Echolocation by insect-eating bats. BioScience, 51: 557–569. Google Scholar
  • 38. M. Schuchmann , S. J. Puechmaille , and B. M. Siemers . 2012. Horseshoe bats recognise the sex of conspecifics from their echolocation calls. Acta Chiropterologica, 14: 161– 166. Google Scholar
  • 39. R. K. Selander 1966. Sexual dimorphism and differential niche utilization in birds. The Condor, 68: 113–151. Google Scholar
  • 40. N. B. Simmons , and R. S. Voss . 1998. Bats of Paracou. Bulletin American Museum of Natural History, 237: 1–219. Google Scholar
  • 41. D. I. Solick , and R. M. R. Barclay . 2006. Morphological differences among western long-eared myotis (Myotis evotis) populations in different environments. Journal of Mammalogy, 87: 1020–1026. Google Scholar
  • 42. R. D. Stevens , M. E. Johnson , and E. S. McCulloch . 2013. Absolute and relative secondary-sexual dimorphism in wing morphology: a multivariate test of the ‘Big Mother’ hypothesis. Acta Chiropterologica, 15: 163–170. Google Scholar
  • 43. M. Tschapka , E. B. Sperr , L. A. Caballero-Martínez , and R. A. Medellín . 2008. Diet and cranial morphology of Muso nycteris harrisoni, a highly specialized nectar-feeding bat in western Mexico. Journal of Mammalogy, 89: 924–932. Google Scholar
  • 44. D. Vanderelst , F. De Mey , H. Peremans , I. Geipel , E. K. V. Kalko , and U. Firzlaf . 2010. What noseleaves do for FM bats depends on their degree of sensorial specialization. PLoS ONE, 5: e11893. Google Scholar
  • 45. D. Vanderelst , R. Jonas , and P. Herbert . 2012. The furrows of Rhinolophidae revisited. Journal of The Royal Society Interface, 9: 1100 –1103. Google Scholar
  • 46. D. Vanderelst , Y. F. Lee , I. Geipel , E. K. V. Kalko , Y. M. Kuo , and H. Peremans . 2013. The noseleaf of Rhinolophus formosae focuses the frequency modulated (FM) component of the calls. Frontiers in Physiology, 4: 191. Google Scholar
  • 47. P. M. Velazco , and R. Cadenillas . 2011. On the identity of Lophostoma silvicolum occidentalis (Davis and Carter, 1978) (Chiroptera: Phyllostomidae). Zootaxa, 2962: 1–20. Google Scholar
  • 48. P. M. Velazco , and A. L. Gardner . 2009. A new species of Platyrrhinus (Chiroptera: Phyllostomidae) from western Colombia and Ecuador, with emended diagnoses of P. aquilus, P. dorsalis, and P. umbratus. Proceedings of Biological Society of Washington, 122: 249–281. Google Scholar
  • 49. A. L. Wetterer , M. V. Rockman , and N. B. Simmons . 2000. Phylogeny of phyllostomid bats (Mammalia: Chiroptera): data from diverse morphological systems, sex chromosomes, and restriction sites. Bulletin of the American Museum of Natural History, 248: 1–200. Google Scholar
  • 50. D. F. Williams , and J. S. Findley . 1979. Sexual size dimorphism in Vespertilionid bats. American Midland Naturalist, 102: 113–126. Google Scholar
  • 51. S. L. Williams , and H. H. Genoways . 2008. Genus Mimon. Pp. 281–286, in Mammals of South America. Volume 1: marsupials, xenarthrans, shrews, and bats ( A. L. Gardner, ed.). The University of Chicago Press, Chicago, USA, xx + 669 pp. Google Scholar
  • 52. M. R. Willig 1983. Composition, microgeographic variation, and sexual dimorphism in Caatingas and Cerrado bat communities from Northeast Brazil. Bulletin of Carnegie Museum of Natural History, 23: 1–131. Google Scholar
  • 53. M. R. Willig , and R. R. Hollander . 1995. Secondary sexual dimorphism and phylogenetic constraints in bats: a multivariate approach. Journal of Mammalogy, 76: 981–992. Google Scholar
  • 54. M. R. Willig , R. D. Owen , and R. L. Colbert . 1986. Assessment of morphometric variation in natural populations: the inadequacy of the univariate approach. Systematic Zoology, 35: 195–203. Google Scholar
  • 55. M. R. Willig , S. J. Presley , C. P. Bloch , C. L. Hice , S. P. Yanoviak , M. M. Díaz , L. Arias Chauca , V. Pacheco , and S. C. Weaver . 2007. Phyllostomid bats of lowland Amazonia: effects of habitat alteration on abundance. Biotropica, 39: 737–746. Google Scholar
  • 56. Q. Zhuang , and R. Müller . 2006. Noseleaf furrows in a horseshoe bat act as resonance cavities shaping the biosonar beam. Physical Review Letters, 97 (21): 1–4. Google Scholar

Typ dokumentu

Bibliografia

Identyfikator YADDA

bwmeta1.element.agro-46321464-566e-4675-87b0-066f34706044
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.