PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
2018 | 51 | 1 |

Tytuł artykułu

Soil moisture under no-tillage and tillage systems in maize long-term experiment

Warianty tytułu

Języki publikacji

EN

Abstrakty

EN
The aim of the study was to evaluate the impact of conventional till (CT) and no-till (NT) cultivation systems in long term experiment with maize on soil water dynamics using continuous soil moisture (SM) measurements in the 2014, 2015, 2016 vegetation seasons. The ability of HERMES model to simulate SM was also evaluated in Polish conditions. The long term experiment with maize is located in the Grabów Experimental Farm of Institute of Soil Science and Plant Cultivation – State Research Institute in Masovian Voivodeship – Central Poland (51˚21´18´´N, 21˚40´09´´E). The HERMES model was calibrated by modification of temperature sums in crop parameters file and capacity parameters (field capacity and wilting point) of the experimental site. The results show that NT system has a positive impact on soil water content. However, this improvement is dependent on a year, phenological phase and soil layer. The results showed also that calibrated (until now) model HERMES is able to simulate SM in a wet year. For simulation of SM in a dry year there is still need for future improvement of calibration parameters.

Słowa kluczowe

Wydawca

-

Rocznik

Tom

51

Numer

1

Opis fizyczny

p.103-117,fig.,ref.

Twórcy

autor
  • Department of Bioeconomy and Systems Analysis, Institute of Soil Science and Plant Cultivation - State Research Institute, 8 Czartoryskich St, 24-100 Pulawy, Poland
autor
  • Department of Bioeconomy and Systems Analysis, Institute of Soil Science and Plant Cultivation - State Research Institute, 8 Czartoryskich St, 24-100 Pulawy, Poland
autor
  • Department of Bioeconomy and Systems Analysis, Institute of Soil Science and Plant Cultivation - State Research Institute, 8 Czartoryskich St, 24-100 Pulawy, Poland
autor
  • Department of Forage Crop Production, Institute of Soil Science and Plant Cultivation - State Research Institute, 8 Czartoryskich St, 24-100 Pulawy, Poland

Bibliografia

  • Ahmadi, S.H., Mosallaeepour, E., Kamgar-Haghighi, A.A., Sepaskhah, A.R., 2015. Modeling maize yield and soil water content with AquaCrop under full and deficit irrigation managements. Water Resour. Manag. 29, 2837–2853. https://doi.org/10.1007/s11269-015-0973-3
  • Basche, A.D., Kaspar, T.C., Archontoulis, S.V., Jaynes, D.B., Sauer, T.J., Parkin, T.B., Miguez, F.E., 2016. Soil water improvements with the long-term use of a winter rye cover crop. Agric. Water Manag. 172, 40–50. https://doi.org/10.1016/j.agwat.2016.04.006
  • Bednarek, R., Owczarzak, W., Mocek-Półciniak, A., Dąbrowski, M., 2015. The impact of corn tillage system on the properties of organic matter in the humus horizon of black earth (haplic phaeozems) in poznański lake district. Pol. J. Soil Sci. 46, 87.
  • Blanco-Canqui, H., Wienhold, B.J., Jin, V.L., Schmer, M.R., Kibet, L.C., 2017. Long-term tillage impact on soil hydraulic properties. Soil Tillage Res. 170, 38–42. https://doi.org/10.1016/j.still.2017.03.001
  • Blecharczyk, A., Malecka, I., Sierpowski, J., 2007. Long-term effects of tillage systems on physico-chemical soil properties (in Polish). Fragm. Agron. 1, 7–13.
  • Blecharczyk, A., Malecka, I., Skrzypczak, G., 2004. Effect of reduced tillage on yield, weed infestation of maize and soil properties (in Polish). Acta Sci. Pol. Agric. 3, 157–163.
  • Busari, M.A., Kukal, S.S., Kaur, A., Bhatt, R., Dulazi, A.A., 2015. Conservation tillage impacts on soil, crop and the environment. Int. Soil Water Conserv. Res. 3, 119–129. https://doi.org/10.1016/j.iswcr.2015.05.002
  • Chi, J., Waldo, S., Pressley, S., O’Keeffe, P., Huggins, D., Stöckle, C., Pan, W.L., Brooks, E., Lamb, B., 2016. Assessing carbon and water dynamics of no-till and conventional tillage cropping systems in the inland Pacific Northwest US using the eddy covariance method. Agric. For. Meteorol. 218, 37–49. https://doi.org/10.1016/j.agrformet.2015.11.019
  • Copec, K., Filipovic, D., Husnjak, S., Kovacev, I., Kosutic, S., 2016. Effects of tillage systems on soil water content and yield in maize and winter wheat production. Plant Soil Environ. 61, 213–219. https://doi.org/10.17221/156/2015-PSE
  • Czyż, E., 2011. Effects of cultivation of maize (Zea mays L.) in monoculture and crop rotation on some soil physical properties (in Polish). Soil Sci. Ann. 62.
  • Czyż, E.A., Dexter, A.R., 2010. Effects of different cultivation technologies on soil bulk density and penetration resistance (in Polish). Soil Sci. Ann. 61.
  • Czyż, E.A., Dexter, A.R., 2008. Soil physical properties under winter wheat grown with different tillage systems at selected locations. Int Agrophysics 22, 191–201.
  • Doorenbos, J., 1975. Guidelines for predicting crop water requirements. Food Agric. Organ. Rome Irrig Drain. Pap 24.
  • Fabrizzi, K.P., Garcıa, F.O., Costa, J.L., Picone, L.I., 2005. Soil water dynamics, physical properties and corn and wheat responses to minimum and no-tillage systems in the southern Pampas of Argentina. Soil Tillage Res. 81, 57–69. https://doi.org/10.1016/j.still.2004.05.001
  • Graß, R., Thies, B., Kersebaum, K.-C., Wachendorf, M., 2015. Simulating dry matter yield of two cropping systems with the simulation model HERMES to evaluate impact of future climate change. Eur. J. Agron. 70, 1–10. https://doi.org/10.1016/j.eja.2015.06.005
  • Hernández, M., Echarte, L., Della Maggiora, A., Cambareri, M., Barbieri, P., Cerrudo, D., 2015. Maize water use efficiency and evapotranspiration response to N supply under contrasting soil water availability. Field Crops Res. 178, 8–15. https://doi.org/10.1016/j.fcr.2015.03.017
  • Holland, J.M., 2004. The environmental consequences of adopting conservation tillage in Europe: reviewing the evidence. Agric. Ecosyst. Environ. 103, 1–25. https://doi.org/10.1016/j.agee.2003.12.018
  • Kersebaum, K.C., 2011. Special features of the HERMES model and additional procedures for parameterization, calibration, validation, and applications. Methods Introd. Syst. Models Agric. Res. 65–94. https://doi.org/10.2134/advagricsystmodel2.c2
  • Kersebaum, K.C., 2007. Modelling nitrogen dynamics in soil–crop systems with HERMES. Nutr. Cycl. Agroecosystems 77, 39–52. https://doi.org/10.1007/s10705-006-9044-8
  • Kersebaum, K.C., 1995. Application of a simple management model to simulate water and nitrogen dynamics. Ecol. Model. 81, 145–156. https://doi.org/10.1016/0304-3800(94)00167-G
  • Kersebaum, K.C., Lorenz, K., Reuter, H.I., Schwarz, J., Wegehenkel, M., Wendroth, O., 2005. Operational use of agro-meteorological data and GIS to derive site specific nitrogen fertilizer recommendations based on the simulation of soil and crop growth processes. Phys. Chem. Earth Parts ABC 30, 59–67. https://doi.org/10.1016/j.pce.2004.08.021
  • Kersebaum, K.C., Mirschel, W., Wenkel, K.O., Manderscheid, R., Weige, H.J., Nendel, C., 2009. Modelling climate change impacts on crop growth and management in Germany. Clim. Var. Model. Tools Agric. Decis.-Mak. Nova Sci. Publ. N. Y. USA.
  • Liu, S., Yang, J.Y., Zhang, X.Y., Drury, C.F., Reynolds, W.D., Hoogenboom, G., 2013. Modelling crop yield, soil water content and soil temperature for a soybean–maize rotation under conventional and conservation tillage systems in Northeast China. Agric. Water Manag. 123, 32–44. https://doi.org/10.1016/j.agwat.2013.03.001
  • Machul, M., 2007. Possibilities and implications of using reduced tillage and direct sowing in maize cultivation (in Polish). Stud. Rap. IUNG–PIB 9.
  • Małecka-Jankowiak, I., Blecharczyk, A., Faligowska, A., Szukała, J., Waniorek, B., 2015. Effect of irrigation and tillage systems on the physical properties in soil under yellow and narrow-leaved lupin (in Polish). Fragm Agron 32, 43–52.
  • Michalczyk, A., Kersebaum, K.C., Roelcke, M., Hartmann, T., Yue, S.-C., Chen, X.-P., Zhang, F.-S., 2014. Model-based optimisation of nitrogen and water management for wheat–maize systems in the North China Plain. Nutr. Cycl. Agroecosystems 98, 203–222.
  • Mkoga, Z.J., Tumbo, S.D., Kihupi, N., Semoka, J., 2010. Extrapolating effects of conservation tillage on yield, soil moisture and dry spell mitigation using simulation modelling. Phys. Chem. Earth Parts ABC 35, 686–698. https://doi.org/10.1016/j.pce.2010.07.036
  • Mupangwa, W., Jewitt, G.P.W., 2011. Simulating the impact of no-till systems on field water fluxes and maize productivity under semi-arid conditions. Phys. Chem. Earth Parts ABC 36, 1004–1011. https://doi.org/10.1016/j.pce.2011.07.069
  • Naresh, R.K., Singh, S.P., Dwivedi, A., Sepat, N.K., Kumar, V., Ronaliya, L.K., Kumar, V., Singh, R., 2013. Conservation Agriculture Improving Soil Quality for Sustainable Production Systems under Smallholder Farming Conditions in North West India: A Review. Int. J. Life Sci. Bot. Pharm. Res. 2, 151–213.
  • Palosuo, T., Kersebaum, K.C., Angulo, C., Hlavinka, P., Moriondo, M., Olesen, J.E., Patil, R.H., Ruget, F., Rumbaur, C., Takáč, J., 2011. Simulation of winter wheat yield and its variability in different climates of Europe: a comparison of eight crop growth models. Eur. J. Agron. 35, 103–114. https://doi.org/10.1016/j.eja.2011.05.001
  • Pohanková, E., Trnka, M., Hlavinka, P., Takáč, J., Žalud, Z., 2013. Calibration of the crop growth models for winter wheat, in: Proceedings of International PhD Students Conference MendelNet 2013. pp. 130–135.
  • Rötter, R.P., Palosuo, T., Kersebaum, K.C., Angulo, C., Bindi, M., Ewert, F., Ferrise, R., Hlavinka, P., Moriondo, M., Nendel, C., 2012. Simulation of spring barley yield in different climatic zones of Northern and Central Europe: a comparison of nine crop models. Field Crops Res. 133, 23–36. https://doi.org/10.1016/j.fcr.2012.03.016
  • Sommer, R., Piggin, C., Haddad, A., Hajdibo, A., Hayek, P., Khalil, Y., 2012. Simulating the effects of zero tillage and crop residue retention on water relations and yield of wheat under rainfed semiarid Mediterranean conditions. Field Crops Res. 132, 40–52. https://doi.org/10.1016/j.fcr.2012.02.024
  • Su, Z., Zhang, J., Wu, W., Cai, D., Lv, J., Jiang, G., Huang, J., Gao, J., Hartmann, R., Gabriels, D., 2007. Effects of conservation tillage practices on winter wheat water-use efficiency and crop yield on the Loess Plateau, China. Agric. Water Manag. 87, 307–314. https://doi.org/10.1016/j.agwat.2006.08.005
  • Trnka, M., Dubrovský, M., Semerádová, D., Žalud, Z., 2004. Projections of uncertainties in climate change scenarios into expected winter wheat yields. Theor. Appl. Climatol. 77, 229–249.
  • Wimmerova, M., Pohankova, E., Christian, K., Kersebaum, M.T., Zalud, Z., Hlavinka, P., 2016. Assessing the impact of drought stress on winter wheat canopy by HERMES crop growth model, in: MendelNet 2016: Proceedings of International PhD Students Conference, 189-194.
  • Włodek, s., Biskupski, 2011. The dynamics of haplic luvisol moisture in many-years experiment with deifferent systems of tillage (in Polish). Soil Sci. Ann. 62.
  • Włodek, S., Biskupski, A., Pabin, J., 2008. Wlodek, S., Biskupski, A., & Pabin, J. (2008). Dynamics of moisture contents in the upper soil layer at different systems of tillage (in Polish). Soil Sci. Ann, 59(1), 221-225.
  • Włodek, S., Biskupski, A., Pabin, J., Kaus, A., 2007. Yielding of crops and changes in soil water retention under different systems of tillage (in Polish). Agricultural Engineering. 11, 195–200

Typ dokumentu

Bibliografia

Identyfikatory

Identyfikator YADDA

bwmeta1.element.agro-461dd8ac-f15c-4840-a146-9a5f6d41c2cd
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.