PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
2012 | 34 | 3 |

Tytuł artykułu

The expression of a new HD-Zip II gene, MSHB1, involving the inhibitory effect of thidiazuron on somatic embryogenic competence in alfalfa (Medicago sativa L. cv. Jinnan) callus

Warianty tytułu

Języki publikacji

EN

Abstrakty

EN
Homeodomain leucine zipper (HD-Zip) proteins play important roles in plant development. In this study, we not only identified and characterized a new HD-Zip II gene, designated as MSHB1 (HM114227), from alfalfa (Medicago sativa L. cv. Jinnan) callus treated with thidiazuron (TDZ) which reduced the embryogenic competence of the callus, but also presented the first evidence that MSHB1 is involved in the inhibitory effect of TDZ on somatic embryogenic competence in alfalfa callus. The full-length cDNA was 1,578 bp with an open reading frame of 1,023 bp, encoding a predicted protein of 340 amino acid residues, plus three introns. MSHB1 was strongly expressed in the callus treated with TDZ, but was only slightly detected in the leaf and petiole. TDZ treatment significantly decreased the frequency of somatic embryogenesis in the callus, but up-regulated MSHB1 expression during callus induction, callus maintenance and somatic embryo induction. These results suggest that the inhibitory effect of TDZ on embryogenic competence of alfalfa callus might be mediated by the regulation of MSHB1 expression.

Słowa kluczowe

Wydawca

-

Rocznik

Tom

34

Numer

3

Opis fizyczny

p.1067-1074,fig.,ref.

Twórcy

autor
  • The Key Laboratory of Gene Engineering of the Ministry of Education, School of Life Sciences, Sun Yat-sen University, 510275 Guangzhou, People's Republic of China
autor
  • The Key Laboratory of Gene Engineering of the Ministry of Education, School of Life Sciences, Sun Yat-sen University, 510275 Guangzhou, People's Republic of China
  • School of Traditional Chinese Medicine, Guangdong Pharmateutical University, 510006 Guangzhou, People's Republic of China
autor
  • The Key Laboratory of Gene Engineering of the Ministry of Education, School of Life Sciences, Sun Yat-sen University, 510275 Guangzhou, People's Republic of China
autor
  • The Key Laboratory of Gene Engineering of the Ministry of Education, School of Life Sciences, Sun Yat-sen University, 510275 Guangzhou, People's Republic of China
autor
  • The Key Laboratory of Gene Engineering of the Ministry of Education, School of Life Sciences, Sun Yat-sen University, 510275 Guangzhou, People's Republic of China
autor
  • The Key Laboratory of Gene Engineering of the Ministry of Education, School of Life Sciences, Sun Yat-sen University, 510275 Guangzhou, People's Republic of China

Bibliografia

  • Agalou A, Purwantomo S, Overnas E, Henrik J, Zhu X, Amy E, Rolf JK, Peter E, Inez HS, Zhu Z, Wang M, Xiong L, Annemarie HM, Pieter BFO (2008) A genome wide survey of HD-Zip genes in rice and analysis of drought-responsive family members. Plant Mol Biol 66:87–103
  • Allfrey JM, Northcote DH (1977) The effects of the axis and plant hormones on the mobilization of storage materials in the groundnut (Arachis hypogea) during germination. New Phytol 78:547–563
  • Aoyama T, Dong CH, Wu Y, Carabelli M, Sessa G, Ruberti I, Morelli G, Chua NH (1995) Ectopic expression of the Arabidopsis transcriptional activator Athb-1 alters leaf cell fate in tobacco. Plant Cell 7:1773–1785
  • Ariel FD, Manavella PA, Dezar CA, Chan RL (2007) The true story of the HD-Zip family. Trends Plant Sci 12:419–426
  • Deng X, Phillips J, Brautigam A, Engstrom P, Johannesson H, Meijer AH, Ouwerkerk PBF, Ruberti I, Salinas J, Vera P, Iannacone R, Bartels D (2006) A homeodomain leucine zipper gene from Craterostigma plantagineum regulates abscisic acid responsive gene expression and physiological responses. Plant Mol Biol 61:469–489
  • Di Cristina M, Sessa G, Dolan L, Linstead P, Baima S, Ruberti I, Morelli G (1996) The Arabidopsis Athb-10 (GLABRA2) is an HD-Zip protein required for regulation of root hair development. Plant J 10:393–402
  • Feher A, Pasternak TP, Dudits D (2003) Transition of somatic plant cells to an embryogenic state. Plant Cell Tissue Organ Cult 74:201–228
  • Feng BH, Wu B, Zhang CR, Huang X, Chen YF, Huang XL (2011) Cloning and expression of 1-aminocyclopropane-1-carboxylate oxidase cDNA induced by thidiazuron during somatic embryogenesis of alfalfa (Medicago sativa). J Plant Physiol. doi: 10.1016/j.jplph.2011.08.01
  • Gamborg O, Miller R, Ojima K (1968) Nutrient requirements of suspension cultures of soybean roots cells.Exp Cell Res 50:151–158
  • Harris JC, Hrmova M, Lopato S, Langridge P (2011) Modulation of plant growth by HD-Zip class I and II transcription factors in response to environmental stimuli. New Phytol 190:823–837
  • Huang XL, Li XJ, Fu JR, Lao CL (1994) Effect of thidiazuron on ethylene production and somatic embryogenesis in callus of alfalfa (Medicago sativa L.). Acta Phytophysiol Sin 20:367–372
  • Huang XL, Li XJ, Li Y, Huang LZ (2001) The effect of AOA on ethylene and polyamine metabolismduring early phases of somatic embryogenesis in Medicago sativa. Physiol Plant 113:424–429
  • Hutchinson MJ, Krisharaj S, Saxena PK (1997) Inhibitory effect of GA3 on the development of TDZ-induced somatic embryogenesis of geranium (Pelargonium × horturum) hypocotyls cultures. Plant Cell Rep 16:435–438
  • Itzhaki H, Woodson WR (1993) Characterization of an ethyleneresponsive glutathione S-transferase gene cluster in carnation. Plant Mol Biol 22:43–58
  • Jimenez VM (2001) Regulation of in vitro somatic embryogenesis with emphasis on to the role of endogenous hormones. Rev Brasi de Fisio Vegl 13:196–223
  • Jimenez VM (2005) Involvement of plant hormones and plant growth regulators on in vitro somatic embryogenesis. Plant Growth Regul 47:91–110
  • Jones MPA, Cao J, O’Brien R, Murch SJ, Saxena PK (2007) The mode of action of thidiazuron: auxins, indoleamines, and ion channels in the regeneration of Echinacea purpurea L. Plant Cell Rep 26:1481–1490
  • Kawahara R, Komamine A, Fukuda H (1995) Isolation and characterization of homeobox-containing genes of carrot. Plant Mol Biol 27:155–164
  • Kumar S, Tamura K, Jakobsen IB, Nei M (2001) MEGA2: molecular evolutionary genetics analysis software. Bioinformatics 17:1244–1245
  • Kumar V, Ramakrishna A, Ravishankar GA (2007) Influence of different ethylene inhibitors on somatic embryogenesis and secondary embryogenesis from Coffea canephora P ex Fr. In Vitro Cell Dev Biol Plant 43:602–607
  • Lin ZF, Hong YG, Yin MG, Li CY, Zhang K, Grierson D (2008) A tomato HD-Zip homeobox protein, LeHB-1, plays an important role in floral organogenesis and ripening. Plant J 55:301–310
  • Luo Y, Liu YB, Dong YX, Gao XQ, Zhang XS (2009) Expression of a putative alfalfa helicase increases tolerance to abiotic stress in Arabidopsis by enhancing the capacities for ROS scavenging and osmotic adjustment. J Plant Physiol 166:385–394
  • Murthy BNS, Murch SJ, Saxena PK (1998) Thidiazuron: a potent regulator of in vitro plant morphogenesis. In Vitro Cell Dev Biol Plant 34:267–275
  • Namasivayam P (2007) Acquisition of embryogenic competence during somatic embryogenesis. Plant Cell Tissue Organ Cult 90:1–8
  • Ni YX, Wang XL, Li DD, Wu YJ, Xu WL, Li XB (2008) Novel cotton homeobox gene and its expression profiling in root development and in response to stresses and phytohormones. Acta Biochim Biophys Sin 40:78–84
  • Ramakers C, Ruijter JM, Lekanne Deprez LH, Moorman AFM (2003) Assumption-free analysis of quantitative real-time PCR data. Neurosci Lett 339:62–66
  • Sambrook J, Fritsch EF, Maniatis T (1989) Molecular cloning: a laboratory manual, 2nd edn. Cold Spring Harbor Laboratory Press, New York
  • Schena M, Davis RW (1992) HD-Zip protein members of Arabidopsis homeodomain protein superfamily. Proc Natl Acad Sci USA 89:3894–3898
  • Schenk RU, Hildebrandt AC (1972) Medium and techniques for induction and growth of monocotyledonous and dicotyledonous plant cell cultures. Can J Bot 50:199–204
  • Schmittgen TD, Livak KJ (2008) Analyzing real-time PCR data by the comparative CT method. Nat Protoc 3:1101–1108
  • Sessa G, Carabelli M, Ruberti I, Lucchetti S, Baima S, Morelli G (1994) Identification of distinct families of HD-Zip proteins in Arabidopsis thaliana. In: Pudigdomenech P, Coruzzi G (eds) Molecular-genetic analysis of plant development and metabolism. Springer, Heidelberg, pp 412–426
  • Son O, Cho HY, Kim MR, Lee H, Lee MS, Song E, Park JH, Nam KH, Chun JY, Kim HJ, Hong SK, Chung YY, Hur CG, Cho HT, Cheon CI (2005) Induction of a homeodomain-leucine zipper gene by auxin is inhibited by cytokinin in Arabidopsis roots. Biochem Biophys Res Commun 326:203–209
  • Sonoda T, Koita H, Nakamoto-Ohta S, Kondo K, Suezak T, Kato T, Ishizaki Y, Nagai K, Iida N, Sato S, Umezawa T, Hibino T (2009) Increasing fiber length and growth in transgenic tobacco plants overexpressing a gene encoding the Eucalyptus camaldulensis HD-Zip class II transcription factor. Plant Biotechnol 26:115–120
  • Sorin C, Salla-Martret M, Bou-Torrent J, Roig-Villanova I, Martinez-Garcia JF (2009) ATHB4, a regulator of shade avoidance, modulates hormone response in Arabidopsis seedlings. Plant J 59:266–277
  • Stewart CN Jr, Via LE (1993) A rapid CTAB DNA isolated technique useful for RAPD fingerprinting and other PCR application. Biotechniques 14:748–749
  • Szűcs A, Dorjgotov D, Ötvös K, Fodor C, Domoki M, Györgyey J, Kaló P, Kiss GB, Dudits D, Fehér A (2006) Characterization of three Rop GTPase genes of alfalfa (Medicago sativa L.). Biochim Biophys Acta, 108–115
  • Tahir M, Belmonte MF, Elhiti M, Flood H, Stasolla C (2008) Identification and characterization of PgHZ1, a novel homeodomain leucine-zipper gene isolated from white spruce (Picea glauca) tissue. Plant Physiol Biochem 46:1031–1039
  • Wang YJ, Li YD, Luo GZ, Tian AG, Wang HW, Zhang JS, Chen SY (2005) Cloning and characterization of an HDZip I gene GmHZ1 from soybean. Planta 221:831–843
  • Zhang CR, Wuang XL, Wu JY, Feng BH, Chen YF (2006) Identification of TDZ-induced ESTs expressed differentially during callus differentiation in alfalfa (Medicago sativa). Physiol Plant 128:732–739

Uwagi

Rekord w opracowaniu

Typ dokumentu

Bibliografia

Identyfikatory

Identyfikator YADDA

bwmeta1.element.agro-45f3c51b-9f35-4831-bc5e-d34ab893c1ef
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.