PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
2019 | 28 | 5 |

Tytuł artykułu

Regional distributed energy system planning: a case study of an ecological town in China

Autorzy

Warianty tytułu

Języki publikacji

EN

Abstrakty

EN
The regional distributed energy system is a comprehensive energy utilization system distributed on the user side, which has the characteristics of low carbon, flexibility, complementation, interconnection and so on. It is an important trend of energy system development in China in the future. Firstly, a multi-agent based information physical fusion model for regional distributed energy systems is proposed in this paper. The optimization model of the regional distributed energy system based on decision and capacity optimization is constructed at the macro and micro levels. At the same time, the regional distributed energy system is regarded as a local area “energy Internet” network. Based on graph theory and the layout optimization of an energy station, load center, energy storage center and transmission network, we constructed the “station network” layout optimization model and designed an optimization algorithm that can realize the global layout optimization of energy station, load center, energy storage center and transmission network. Finally, taking an ecological town in central China as an example, we verify the feasibility and validity of the model and method.

Słowa kluczowe

Wydawca

-

Rocznik

Tom

28

Numer

5

Opis fizyczny

p.3615-3634,fig.,ref.

Twórcy

autor
  • Department of Economic Management, North China Electric Power University, Baoding, China
autor
  • Department of Computers, North China Electric Power University, Baoding, China

Bibliografia

  • 1. STEEMER K. Energy and the city: density, buildings and transport. Energy and Buildings, 35, 3, 2003.
  • 2. TIAN W., WEI L., ZHU L., HE C., SUN Y., YANG S. Building energy analysis at urban scale. Building Energy Efficiency, 44, 59, 2016.
  • 3. ADALBERTH K. Energy use during the life cycle of single-unit dwellings: examples. Building and Environment, 32, 321, 1997.
  • 4. LIU D.L., LIU J.P, YANG L. Building energy consumption principia under climate change in China. Acta Energiae Solaris Sinica, 34, 439, 2013.
  • 5. DAI Y.D., LV B., FENG C. China total energy consumption control and energy conservation during the 13th five-year period. J. Beijing Inst. Tech. (Soc. Sci. Ed.), 17, 1, 2015.
  • 6. JEREMY R. The Third Industrial Revolution. Publisher: Citic Press: Beijing, China, 46, 2012.
  • 7. IEA ECBCS Annex 49. Low energy systems for high performance buildings and communities. Available online: http://www.ecbcs.org/annexes/annex49.htm. (accessed on 26 December 2017)
  • 8. JIN M., FENG W., LIU P., MARNAY C., SPANOS C. MOD-DR: microgrid optimal dispatch with demand response. Applied Energy, 187, 758, 2017.
  • 9. STIEL A., KAZACOS M.S. Feasibility study of energy storage systems in wind/diesel applications using the HOMER model. Applied Sciences, 2, 726, 2012.
  • 10. MIRZAHOSSEINI A.H., TAHERI T. Environmental, technical and financial feasibility study of solar power plants by RETScreen, according to the targeting of energy subsidies in Iran. Renewable and Sustainable Energy Reviews, 16, 2806, 2012.
  • 11. ZHOU N., MARNAY C., FIRESTONE R., et al. An analysis of the DER Adoption climate in Japan using optimization results for prototype buildings with U.S. comparisons. Energy and Buildings, 38, 1423, 2006.
  • 12. KANNAN R. The Development and application of a temporal MARKAL energy system model using flexible time slicing. Applied Energy, 88, 2261, 2011.
  • 13. ALVARADO D.C., ACHA S., SHAH N., MARKIDES C.N. A technology selection and opera-lion (tso) optimisation model for distributed energy systems: mathematical formulation and case study. Applied Energy, 180, 491, 2016.
  • 14. JU L.W., TAN Z.F., LI H.H., TAN Q.K., YU X.B., SONG X.H. Multi-objective operation optimization and evaluation model for CCHP and renewable energy based hybrid energy system driven by distributed energy resources in China. Energy, 111, 322, 2016.
  • 15. MENDES G., IOAKIMIDIS C., FERRAO P. On the planning and analysis of integrated community energy systems: a review and survey of available tools. Renewable & Sustainable Energy Reviews, 15, 4836, 2011.
  • 16. XU B.P., XU W.L. Approach and practice of regional energy planning under low carbon situation. HV&AC, 42, 10, 2012.
  • 17. LONG W.D. Smart micro energy network in green eco-communities. HV&AC, 43, 39, 2013.
  • 18. LI J., ZHANG R.X., YANG H.M., SUN Z.Y., FENG X.M., QIAO B. Study on energy planning in green ecological city. Building Science, 31, 141, 2015.
  • 19. BRUM M., ERICKSON P., JENKINS B., KORNBLUTH K. A comparative study of district and individual energy systems providing electrical-based heating, cooling, and domestic hot water to a low-energy use residential community. Energy and Buildings, 92, 306, 2015.
  • 20. OZUGUL M.D., CEKIC T.I., OZBAKIR A. The next wave of sustainable planning: green neighbourhood assessment systems. Int. J. Env. and Sus. Dev., 13, 109, 2014.
  • 21. YANG Y.P. Distributed energy system. Bei Jing: Chemical Industry Press, 11, 2011.
  • 22. HUA B., GONG J. Developing the SGTES centering on DES/CCHP. Building Science, 23, 5, 2007.
  • 23. LONG W.D. Energy management and internet thinking in green ecological urban area. Con. Sci. Tech, 7, 28, 2015.
  • 24. LONG W.D. Green winter olympics and national renewable energy demonstration area under the background of Zhangjiakou building energy planning. Con. Sci. Tech., 20, 26, 2015.
  • 25. JENNINGS N.R., SYCARA K., WOOLDRIDGE M. A roadmap of agent research and development. Aut. Age. Multi-Agent Syst., 1, 7-38, 1998.
  • 26. FALKE T., KRENGEL S., MEINERZHAGEN A.K., SCHNETTLER A. Multi-objective optimization and simulation model for the design of distributed energy systems. Applied Energy, 184, 1508, 2016.
  • 27. REN H.B., WU Q., GAO W.J., ZHOU W.S. Optimal operation of a grid-connected hybrid pv/fuel cell/battery energy system for residential applications. Energy, 113, 702, 2016.
  • 28. TAN X., WU Y., TSANG D.H.K. Pareto optimal operation of distributed battery energy storage systems for energy arbitrage under dynamic pricing. IEEE Trans. Par. Dis. Syst., 27, 2103, 2016.
  • 29. YANG W.Y., ZHAO Y.R., LISO V., BRANDON N. Optimal design and operation of a syngas-fueled SOFC Micro-CHP system for residential applications in different climate zones in China. Energy and Buildings, 80, 613, 2014.
  • 30. MAROUFMASHAT A., SATTARI S., ROSHANDEL R., FOWLER M.W. Multi-objective optimization for design and operation of distributed energy systems through the multi-energy hub network approach. Ind. Eng chem. Res., 55, 8950, 2016.
  • 31. ELTAMALY A.M., MOHAMED M.A. A novel design and optimization software for autonomous pv/wind/battery hybrid power systems. Math. Prob. Eng., 1, 2014.
  • 32. CHEN J., WANG C.S., ZHAO B., ZHANG X.S. Economic operation optimization of a stand alone microgrid considering characteristics of energy storage system. Auto. Elec. Pow. Syst., 36, 25, 2012.
  • 33. LIANG H., ZHANG F., LONG W.D. Optimization model of complementary district energy system based on multi-energy-sources. HV&AC, 42, 67, 2012.
  • 34. WU X., WANG X.L., BIE Z.H., WANG J.X. Economic operation of microgrid with combined heat and power system. Elec. Pow. Auto. Equip., 33, 1, 2013.
  • 35. YOKOYAMA R., ITO K. Effect of inlet air cooling by ice storage on unit sizing of a gas turbine cogeneration plant. J. Eng. Gas Tur. Pow., 126, 351, 2004.
  • 36. XIAO X.Q., KAN W.M., YANG Y., ZHANG S.J., XIAO Y.H. Superstructure-based optimal planning of cogeneration systems with storage. Proc. CSEE, 32, 8, 2012.
  • 37. DEB K., PRATAP A., AGARWAL S., MEYARIVAN T. A fast and elitist multi-objective genetic algorithm: NSGA-II. IEEE Trans. Evo. Com., 6, 182, 2002.
  • 38. LI P.H., LOU Y.Y. An integer multi-objective optimization model and an enhanced non-dominated sorting genetic algorithm for contraflow scheduling problem. J. Cen. Sou. Uni., 22, 2399, 2015.
  • 39. ZHU Z.J., WANG J., BALOCH M.H. Dynamic economic emission dispatch using modified NSGA-II. Elec. En. Syst., 26, 2684, 2016.
  • 40. CHINESE D. Optimal size and layout planning for district heating and cooling networks with distributed generation options. Int. J. En. Sec. Man., 2, 385, 2008.
  • 41. WEI H.R., DONG M. Based on the bi-level programming for distributed energy systems can build a model of network. China Min. Mag., 18, 108, 2009.
  • 42. LI H.Q., ZHANG X.F., DONG W.J., ZHANG G.Q. Optimum research on cooling and heat transmission and distribution pipe network in smart grid. J. Eng. Therm., 35, 1275, 2014.
  • 43. LONG W.D., BAI W., FAN R. Community Energy Planning for Built Environment in Low Carbon Cities. China Architecture and Building: Beijing, China, 284, 2012.
  • 44. AHKIN T. Lagrangian relaxation based approaches to capacitated hub-and-spoke network design problem. Eur. J. Oper. Res., 79, 501, 1994.
  • 45. ALP O., ERKUT E., DREZNER Z. An efficient genetic algorithm for the p-median problem. Ann. Oper. Res., 122, 21, 2003.
  • 46. CHEN J., REN Y., ZENG G. An improved multi-harmonic sine fitting algorithm based on tabusearch. Measurement, 59, 258, 2015.
  • 47. Ministry of Housing and Urbar-Rural Development of the People’s Republic of China. GB50189-2015 Energy Saving Design Standard for Public Buildings. China Construction Industry Press: Beijing, China, 15, 2015.
  • 48. Ministry of Housing and Urbar-Rural Development of Shan Dong Province. DB37/5026-2014 Energy Saving Design Standard for Residential Buildings. China Building Materials Industry Press: Beijing, China, 3, 2015.
  • 49. SU B., ZHAO K., ZHAO B.K. Cooling load forecasting and simultaneity usage coefficient determination of district cooling energy station. Chongqing Architecture, 13, 12, 2014.
  • 50. OU Y.M. A Comparative Study on Chinese Provincial Carbon Emissions. PH.D. Dissertation, Huazhong University of Science and Technology, Wu Han, China, 2015.

Typ dokumentu

Bibliografia

Identyfikatory

Identyfikator YADDA

bwmeta1.element.agro-45ec9a4a-a8d4-4c21-b8c8-90b9dae50cd4
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.