Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
2009 | 31 | 2 |
Tytuł artykułu

Proline and betaine provide protection to antioxidant and methylglyoxal detoxification systems during cold stress in Camellia sinensis (L.) O. Kuntze

Warianty tytułu
Języki publikacji
The aim of this study was to monitor the influence of proline and betaine exposure on antioxidant and methylglyoxal (MG) detoxification system during cold stress in Camellia sinensis (L.) O. Kuntze. Cold stress enhanced MG and lipid peroxidation levels in tea bud (youngest topmost leaf). This increase was resisted upon the exposure of tea bud to proline and betaine. Exposure of tea bud with proline and betaine also help in maintaining thiol/disulfide ratio during cold stress. Proline exposure enhanced glutathione-S-transferase and glutathione reductase (GR) activity, while betaine exposure increased only GR activity during cold stress. Furthermore, effect of proline/betaine was studied on glyoxalase pathway enzymes that are involved in MG detoxification and comprise of two enzymes glyoxalase I and glyoxalase II. Both proline and betaine showed protective effect on glyoxalase I and activating effect on glyoxalase II during cold stress in tea bud. This investigation, therefore, suggest that proline and betaine might provide protection to cold stress in tea by regulating MG and lipid peroxidation formation as well as by activating or protecting some of antioxidant and glyoxalase pathway enzymes.
Słowa kluczowe
Opis fizyczny
  • Biotechnology Division, Institute of Himalayan Bioresource Technology (CSIR), Palampur 176061, HP, India
  • Biotechnology Division, Institute of Himalayan Bioresource Technology (CSIR), Palampur 176061, HP, India
  • Department of Botany and Plant Sciences, Institute for Integrative Genone Biology, University of California, Riverside, CA 92521-0124, USA
  • Abordo EA, Minhas HS, Thornalley PJ (1999) Accumulation of alpha-oxoaldehydes during oxidative stress: a role in cytotoxicity. Biochem Pharmacol 58:641–648. doi:10.1016/S0006-2952 (99)00132-X
  • Agrawal SB, Rathore D (2007) Changes in oxidative stress defense system in wheat (Triticum aestivum L.) and mung bean (Vigna radiata L.) cultivars grown with and without mineral nutrients and irradiated by supplemental ultraviolet-B. Environ Exp Bot 59:21–33. doi:10.1016/j.envexpbot.2005.09.009
  • Antognelli C, Romani R, Baldracchini F, De Santis A, Andreani G, Talesa V (2003) Different activity of glyoxalase system enzymes in specimens of Sparus auratus exposed to sublethal copper concentrations. Chem Biol Interact 142:297–305. doi:10.1016/ S0009-2797(02)00124-2
  • Apel K, Hirt H (2004) Reactive oxygen species: metabolism, oxidative stress, and signal transduction. Annu Rev Plant Biol 55:373–399. doi:10.1146/annurev.arplant.55.031903.141701
  • Ashraf M, Foolad MR (2007) Roles of glycinebetaine and proline in improving plant abiotic stress resistance. Environ Exp Bot 59:206–216. doi:10.1016/j.envexpbot.2005.12.006
  • Bartling D, Radzio R, Steiner U, Weiler EW (1993) A glutathione S-transferase with glutathione peroxidase activity from Arabidopsis thaliana: molecular cloning and functional characteristics. Eur J Biochem 216:579–586. doi:10.1111/j.1432-1033.1993. tb18177.x
  • Bartoli CG, Simontacchi M, Tambussi E, Beltrano J, Montaldi E, Puntarulo S (1999) Drought and watering dependent oxidative stress: effect on antioxidant content in Triticum aestivum L. leaves. J Exp Bot 50:375–383. doi:10.1093/jexbot/50.332.373
  • Bowler C, Van Montagu M, Inze' D (1992) Superoxide dismutase and stress tolerance. Annu Rev Plant Physiol Plant Mol Biol 43:83–116. doi:10.1146/annurev.pp.43.060192.000503
  • Bradford MM (1976) A rapid and sensitive for the quantitation of microgram quantities of protein utilizing the principle of proteindye binding. Anal Biochem 72:248–254. doi:10.1016/0003-2697 (76)90527-3
  • Chen C, Dickman MB (2005) Proline suppresses apoptosis in the fungal pathogen Colletotrichum trifolii. Proc Natl Acad Sci USA 102:3459–3464. doi:10.1073/pnas.0407960102
  • Chen Z, Young TE, Ling J, Chang SC, Gallie DR (2003) Increasing vitamin C content of plants through enhanced ascorbate recycling. Proc Natl Acad Sci USA 100:3525–3530. doi:10.1073/ pnas.0635176100
  • Cheng C, Yun KY, Ressom HW, Mohanty B, Bajic VB, Jia Y et al (2007) An early response regulatory cluster induced by low temperature and hydrogen peroxide in seedlings of chillingtolerant japonica rice. BMC Genomics 8:175–192. doi:10.1186/1471-2164-8-175
  • De Gara L, Paciolla C, De Tullio MC, Motto M, Arrigioni O (2000) Ascorbate-dependent hydrogen peroxide detoxification and ascorbate regeneration during germination of a highly productive maize hybrid: evidence of an improved detoxification mechanism against reactive oxygen species. Physiol Plant 109:7–13. doi:10.1034/j.1399-3054.2000.100102.x
  • Deswal R, Chakravarty TN, Sopory SK (1993) The glyoxalase system in higher plants: regulation in growth and differentiation. Biochem Soc Trans 21:527–530
  • Fath A, Bethke P, Beligni V, Jones R (2002) Active oxygen and cell death in cereal aleurone cells. J Exp Bot 53:1273–1282. doi: 10.1093/jexbot/53.372.1273
  • Habig WH, Jakoby WB (1981) Assay for differentiation of glutathione-S-transferases. Methods Enzymol 77:398–405. doi:10.1016/S0076-6879(81)77053-8
  • Hasegawa PM, Bressan RA, Zhu JK, Bohnert HJ (2000) Plant cellular and molecular responses to high salinity. Annu Rev Plant Physiol Plant Mol Biol 51:463–499. doi:10.1146/annurev. arplant.51.1.463
  • Hatkios KK (2001) Functions and regulation of plant glutathione S-transferases. In: Hall JC, Hoagland RE, Zablotowicz RM (eds) Pesticide biotransformation in plants and microorganisms: similarities and divergences. American Chemical Society, Washington, pp 218–239
  • Heath RL, Packer L (1968) Photoperoxidation in isolated chloroplasts. I. Kinetics and stoichiometry of fatty acid peroxidation. Arch Biochem Biophys 125:189–198. doi:10.1016/0003-9861 (68)90654-1
  • Hong Z, Lakkineni K, Zhang Z, Verma DPS (2000) Removal of feedback inhibition of D1-pyrroline-5-carboxylate synthetase results in increased proline accumulation and protection of plants from osmotic stress. Plant Physiol 122:1129–1136. doi:10.1104/pp.122.4.1129
  • Hoque MA, Banu MNA, Nakamura Y, Shimoishi Y, Murata Y (2008) Proline and glycinebetaine enhance antioxidant defense and methylglyoxal detoxification systems and reduce NaCl-induced damage in cultured tobacco cells. J Plant Physiol 165:813–824. doi:10.1016/j.jplph.2007.07.013
  • Hoque MA, Okuma E, Banu MNA, Nakamura Y, Shimoishi Y, Murata Y (2007) Exogenous proline mitigates the detrimental effects of salt stress more than exogenous betaine by increasing antioxidant enzyme activities. J Plant Physiol 164:553–561. doi: 10.1016/j.jplph.2006.10.004
  • Khedr AHA, Abbas MA, Wahid AAA, Quick WP, Abogadallah GM (2003) Proline induces the expression of salt-stress responsive proteins and may improve the adaptation of Pancratium maritimum L. to salt-stress. J Exp Bot 54:2553–2562. doi: 10.1093/jxb/erg277
  • Kwon SY, Jeong YJ, Lee HS, Kim JS, Cho KY, Allen RD et al (2002) Enhanced tolerances of transgenic tobacco plants expressing both superoxide dismutase and ascorbate peroxidase in chloroplasts against methyl viologen-mediated oxidative stress. Plant Cell Environ 25:873–882. doi:10.1046/j.1365-3040.2002. 00870.x
  • Kwon SY, Choi SM, Ahn YO, Lee HS, Lee HB, Park YM et al (2003) Enhanced stress-tolerance of transgenic tobacco plants expressing a human DHAR gene. J Plant Physiol 160:347–353. doi: 10.1078/0176-1617-00926
  • Lee YP, Kim SH, Bang JW, Lee HS, Kwak SS, Kwon SY (2007) Enhanced tolerance to oxidative stress in transgenic tobacco plants expressing three antioxidant enzymes in chloroplasts. Plant Cell Rep 26:591–598. doi:10.1007/s00299-006-0253-z
  • Ma QQ, Wang W, Li YH, Li DQ, Zou Q (2006) Alleviation of photoinhibition in drought-stressed wheat (Triticum aestivum) by foliar-applied glycinebetaine. J Plant Physiol 163:165–175. doi: 10.1016/j.jplph.2005.04.023
  • Marrs KA (1996) The functions and regulation of glutathione S-transferases in plants. Annu Rev Plant Physiol Plant Mol Biol 47:27–58. doi:10.1146/annurev.arplant.47.1.127
  • Martins AMTBS, Cordeiro CAA, Freire AMJP (2001) In situ analysis of methylglyoxal metabolism in Saccharomyces cerevisiae. FEBS Lett 499:41–44. doi:10.1016/S0014-5793(01)02519-4
  • May MJ, Vernoux T, Leaver C, Van Montagu M, Inze D (1998) Glutathione homeostasis in plants: implications for environmental sensing and plant development. J Exp Bot 49:649–667. doi: 10.1093/jexbot/49.321.649
  • Moller IM (2001) Plant mitochondria and oxidative stress: electron transport, NADPH turnover, and metabolism of reactive oxygen species. Annu Rev Plant Physiol Plant Mol Biol 52:561–591. doi:10.1146/annurev.arplant.52.1.561
  • Noctor G, Foyer CH (1998) Ascorbate and glutathione: keeping active oxygen under control. Annu Rev Plant Physiol Plant Mol Biol 49:249–279. doi:10.1146/annurev.arplant.49.1.249
  • Noctor G, Arisi AC, Jouanin L, Foyer CH (1998) Manipulation of glutathione and amino acid biosynthesis in the chloroplast. Plant Physiol 118:471–482. doi:10.1104/pp.118.2.471
  • Noctor G, Gomez L, Vanacker H, Foyer CH (2002) Interactions between biosynthesis, compartmentation and transport in the control of glutathione homeostasis and signaling. J Exp Bot 53:1283–1304. doi:10.1093/jexbot/53.372.1283
  • Okuma E, Murakami Y, Shimoishi Y, Tada M, Murata Y (2004) Effects of exogenous application of proline and betaine on the growth of tobacco cultured cells under saline conditions. Soil Sci Plant Nutr 50:1301–1305
  • Racker E (1951) The mechanism of action of glyoxalase. J Biol Chem 190:685–696
  • Ramaswamy O, Guha-Mukherjee S, Sopory SK (1983) Presence of glyoxalase I in pea. Biochem Int 7:307–318
  • Ramaswamy O, Guha-Mukherjee S, Sopory SK (1984) Correlation of glyoxalase I activity with cell proliferation in Datura callus culture. Plant Cell Rep 3:121–124. doi:10.1007/BF02441015
  • Serraj R, Sinclair TR (2002) Osmolyte accumulation: can it really help increase crop yield under drought conditions? Plant Cell Environ 25:333–341. doi:10.1046/j.1365-3040.2002.00754.x
  • Shao HB, Chu LY, Shao MA, Jaleel CA, Mi HM (2008) Higher plant antioxidants and redox signaling under environmental stresses. C R Biol 331:433–441. doi:10.1016/j.crvi.2008.03.011
  • Shiau SY, Yeh AI (2004) On-line measurement of rheological properties of wheat. our extrudates with added oxido-reductants, acid, and alkali. J Food Eng 62:193–202. doi:10.1016/S0260-8774(03)00233-4
  • Singla-Pareek SL, Reddy MK, Sopory SK (2003) Genetic engineering of the glyoxalase pathway in tobacco leads to enhanced salinity tolerance. Proc Natl Acad Sci USA 100:14672–14677. doi: 10.1073/pnas.2034667100
  • Singla-Pareek SL, Yadav SK, Pareek A, Reddy MK, Sopory SK (2006) Transgenic tobacco overexpressing glyoxalase pathway enzymes grow and set viable seeds in zinc-spiked soils. Plant Physiol 140:613–623. doi:10.1104/pp.105.073734
  • Smirnoff N (2005) Antioxidants and reactive oxygen species in plants. Blackwell Publishing, Oxford
  • Subbarao GV, Wheeler RM, Levine LH, Stutte GW (2001) Glycine betaine accumulation, ionic and water relations of red-beet at contrasting levels of sodium supply. J Plant Physiol 158:767–776. doi:10.1078/0176-1617-00309
  • Takahashi H, Hayashi M, Goto F, Sato S, Soga T, Nishioka T et al. (2006) Evaluation of metabolic alteration in transgenic rice overexpressing dihydroflavonol–4-reductase. Ann Bot (Lond) 98:819–825. doi:10.1093/aob/mcl162
  • Thornalley PJ (1990) The glyoxalase system: new developments towards functional characterization of a metabolic pathway fundamental to biological life. Biochem J 269:1–11
  • Vyas D, Kumar S (2005) Tea (Camellia sinensis (L.) O. Kuntze) clone with lower period of winter dormancy exhibits lesser cellular damage in response to low temperature. Plant Physiol Biochem 43:383–388
  • Vyas D, Kumar S, Ahuja PS (2007) Tea (Camellia sinensis) clones with shorter periods of winter dormancy exhibit lower accumulation of reactive oxygen species. Tree Physiol 27:1253–1259
  • Wang W, Vinocur B, Altman A (2003) Plant responses to drought, salinity and extreme temperatures: towards genetic engineering for stress tolerance. Planta 218:1–14. doi:10.1007/s00425-003-1105-5
  • Yadav SK, Singla-Pareek SL, Ray M, Reddy MK, Sopory SK (2005a) Methylglyoxal levels in plants under salinity stress are dependent on glyoxalase I and glutathione. Biochem Biophys Res Commun 337:61–67. doi:10.1016/j.bbrc.2005.08.263
  • Yadav SK, Singla-Pareek SL, Reddy MK, Sopory SK (2005b) Transgenic tobacco plants overexpressing glyoxalase enzymes resist an increase in methylglyoxal and maintain higher reduced glutathione levels under salinity stress. FEBS Lett 579:6265–6271. doi:10.1016/j.febslet.2005.10.006
  • Yang X, Lu C (2005) Photosynthesis is improved by exogenous glycinebetaine in salt-stressed maize plants. Physiol Plant 124:343–352. doi:10.1111/j.1399-3054.2005.00518.x
Rekord w opracowaniu
Typ dokumentu
Identyfikator YADDA
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.