PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
2009 | 31 | 6 |

Tytuł artykułu

cDNA cloning and expression analysis of a putative decarbonylase TaCer1 from wheat (Triticum aestivum L.)

Autorzy

Warianty tytułu

Języki publikacji

EN

Abstrakty

EN
Cuticular wax is the outermost layer of land plants and has complicated components. The amount and composition of wax change under different stresses. These changes are induced by the expression diversification of the gene that is involved in wax biosynthesis. In this paper, we describe the cDNA cloning and expression of a putative aldehyde decarbonylase gene, TaCer1, which is isolated from wheat for the first time. TaCer1 is involved in the decarbonylation pathway of wax biosynthesis and can regulate the contents of aldehydes and alkanes. It has three conservative histidine-rich motifs ordered as HX3H + HX2HH + HX2HH, as found in a number of other membrane-binding fatty acid desaturases. Effects of environmental adversities on the transcript profile of TaCer1 were also explored. It was found that TaCer1 was repressively expressed by abscisic acid, polyethylene glycol, salinity, cold and salicylic acid treatment. Darkness treatment also influenced the expression profile of TaCer1.

Słowa kluczowe

Wydawca

-

Rocznik

Tom

31

Numer

6

Opis fizyczny

p.1111-1118,fig.,ref.

Twórcy

autor
  • Center for Agricultural Resouces Research, Institute of Genetics and Developmental Biology, CAS, Shijiazhuang 050021, China
  • Graduate University of the Chinese Academy of Sciences, Beijing 100049, China
autor
  • Center for Agricultural Resouces Research, Institute of Genetics and Developmental Biology, CAS, Shijiazhuang 050021, China
autor
  • Graduate University of the Chinese Academy of Sciences, Beijing 100049, China
autor
  • Center for Agricultural Resouces Research, Institute of Genetics and Developmental Biology, CAS, Shijiazhuang 050021, China
  • Graduate University of the Chinese Academy of Sciences, Beijing 100049, China
autor
  • Graduate University of the Chinese Academy of Sciences, Beijing 100049, China
  • Institute of Botany, The Chinese Academy of Sciences, Beijing 100093, China
autor
  • Center for Agricultural Resouces Research, Institute of Genetics and Developmental Biology, CAS, Shijiazhuang 050021, China

Bibliografia

  • Aarts MGM, Keijzer CJ, Stiekema WJ, Pereira A (1995) Molecular characterization of the CER1 gene of Arabidopsis involved in epicuticular wax biosynthesis and pollen fertility. Plant Cell 7:2115–2127
  • Bustos MM, Iyer M, Gagliardi SJ (1998) Induction of a β-phaseolin promoter by exogenous abscisic acid in tobacco: developmental regulation and modulation by external sucrose and Ca²⁺ ions. Plant Mol Biol 37:265–274. doi:10.1023/A:1005999725715
  • Cameron KD, Teece MA, Smart LB (2006) Increased accumulation of cuticular wax and expression of lipid transfer protein in response to periodic drying events in leaves of tree tobacco. Plant Physiol 140:176–183. doi:10.1104/pp.105.069724
  • Campalans A, Messeguer R, Goday A, Pages M (1999) Plant responses to drought, from ABA signal transduction events to the action of the induced proteins. Plant Physiol Biochem 37:327–340. doi:10.1016/S0981-9428(99)80039-4
  • Charmley E, Dove H (2007) Using plant wax markers to estimate diet composition and intakes of mixed forages in sheep by feeding a known amount of alkane-labelled supplement. Aust J Agric Res 58:1215–1225. doi:10.1071/AR07187
  • Eichhorn H, Klinghammer M, Becht P, Tenhaken R (2006) Isolation of a novel ABC-transporter gene from soybean induced by salicylic acid. J Exp Bot 57:2193–2201. doi:10.1093/jxb/erj179
  • García MG, Busso CA, Polci P, Garcia Girou NL, Echenique V (2002) Water relations and leaf growth rate of three Agropyron genotypes under water stress. Biocell 26:309–317
  • Hannoufa A, McNevin J, Lemieux B (1993) Epicuticular waxes of eceriferum mutants of Arabidopsis thaliana. Phytochemistry 33:851–855. doi:10.1016/0031-9422(93)85289-4
  • Hansen JD, Pyee J, Xia Y, Wen TJ, Robertson DS, Kolattukudy PE, Nikolau BJ, Schnable PS (1997) The glossy1 locus of maize and an epidermis-specific cDNA from Kleinia odora define a class of receptor-like proteins required for the normal accumulation of cuticular waxes. Plant Physiol 113:1091–1100. doi:10.1104/pp. 113.4.1091
  • Hatterman-Valenti HM, Pitty A, Owen MDK (2006) Effect of environment on giant foxtail (Setaria faberi) leaf wax and fluazifop-P absorption. Weed Sci 50:607–614. doi:10.1614/WS-04-158R2.1
  • Huang L, Zhang ZB, Cui YR, Liu MY, Chai SX, Chen ZB (2003) Relationship between wax content and water use efficiency of leaf and yield in wheat. J Triticeae Crops 23:41–44
  • Jenks MA, Tuttle HA, Eigenbrode SD, Feldmann KA (1995) Leaf epicuticular waxes of the eceriferum mutants in Arabidopsis. Plant Physiol 108:369–377
  • Johnson DA, Richards RA, Turner NC (1983) Yield, water relations, gas exchange, and surface reflectances of near-isogenic wheat lines differing in glaucousness. Crop Sci 23:318–325
  • Karaba A (2007) Improvement of water use efficiency in rice and tomato using Arabidopsis wax biosynthetic genes and transcription factors. Ph.D. thesis, Wageningen University (dissertation no. 4150)
  • Kim KS, Park SH, Jenks MA (2007) Changes in leaf cuticular waxes of sesame (Sesamum indicum L.) plants exposed to water deficit. J Plant Physiol 164:1134–1143. doi:10.1016/j.jplph.2006.07.004
  • Kunst L, Samuels AL (2003) Biosynthesis and secretion of plant cuticular wax. Prog Lipid Res 42:51–80. doi:10.1016/S0163-7827(02)00045-0
  • Kurata T, Kawabata-Awai C, Sakuradani E, Shimizu S, Okada K, Wada T (2003) The YORE-YORE gene regulates multiple aspects of epidermal cell differentiation in Arabidopsis. Plant J 36:55–66. doi:10.1046/j.1365-313X.2003.01854.x
  • Lee PF, Hsing YIC, Chow TY (2000) Promoter activity of a soybean gene encoding a seed maturation protein, GmPM9. Bot Bull Acad Sin 41:175–182
  • Li WQ (2006) The study of wheat cuticular wax and the relationship of glaucousness and wheat water-saving in North China Plain. Master thesis, CAS
  • Li WQ, Zhang ZB, Li JJ (2006) Plant epicuticular wax and drought resistance as well as its molecular biology. J Plant Physiol Mol Biol 32:505–512
  • Mariani C, Wolters-Arts M (2000) Complex waxes. Plant Cell 12:1795–1800
  • Martín JF, Gudiña E, Barredo JL (2008) Conversion of β-carotene into astaxanthin: two separate enzymes or a bifunctional hydroxylase-ketolase protein? Microb Cell Fact 7:3. doi: 10.1186/1475-2859-7-3
  • Millar AA, Clemens S, Zachgo S, Giblin EM, Taylor DC, Kunst L (1999) CUT1, an Arabidopsis gene required for cuticular wax biosynthesis and pollen fertility, encodes a very-long-chain fatty acid condensing enzyme. Plant Cell 11:825–838
  • Richards RA, Rawson HM, Johnson DA (1986) Glaucousness in wheat: its development and effect on water-use efficiency, gas exchange and photosynthetic tissue temperatures. Aust J Plant Physiol 13:465–473
  • Richardson A, Boscari A, Schreiber L, Kerstiens G, Jarvis M, Herzyk P, Fricke W (2007) Cloning and expression analysis of candidate genes involved in wax deposition along the growing barley (Hordeum vulgare) leaf. Planta 226:1459–1473. doi:10.1007/s00425-007-0585-0
  • Rouhi V, Samson R, Van Damme P, Lemeur R (2004) Effects of drought stress induced by PEG 6000 on leaf water status of one domestic (Amygdalus dulcis) and two wild almond (A. lycioides and A. scoparia) species. Commun Agric Appl Biol Sci 69:239–241
  • Rouhi V, Samson R, Lemeur R, Van Damme P (2006) Stomatal resistance under drought stress conditions induced by PEG 6000 on wild almond. Commun Agric Appl Biol Sci 71:269–273
  • Shepherd T, Griffiths DW (2006) The effects of stress on plant cuticular waxes. New Phytol 171:469–499
  • Sturaro M, Hartings H, Schmelzer E, Velasco R, Salamini F, Motto M (2005) Cloning and characterization of GLOSSY1, a maize gene involved in cuticle membrane and wax production. Plant Physiol 138:478–489. doi:10.1104/pp.104.058164
  • Wang WY, Chen WS, Chen WH, Hung LS, Chang PS (2002) Influence of abscisic acid on flowering in Phalaenopsis hybrida. Plant Physiol Biochem 40:97–100. doi:10.1016/S0981-9428(01) 01339-0
  • Zhang JH, Jia WS, Yang JC, Ismail AM (2006) Role of ABA in integrating plant responses to drought and salt stresses. Field Crops Res 97:111–119. doi:10.1016/j.fcr.2005.08.018
  • Zhang JY, Broeckling CD, Sumner LW, Wang ZY (2007) Heterologous expression of two Medicago truncatula putative ERF transcription factor genes, WXP1 and WXP2, in Arabidopsis led to increased leaf wax accumulation and improved drought tolerance, but differential response in freezing tolerance. Plant Mol Biol 64:265–278. doi:10.1007/s11103-007-9150-2

Uwagi

Rekord w opracowaniu

Typ dokumentu

Bibliografia

Identyfikatory

Identyfikator YADDA

bwmeta1.element.agro-45900053-a7d2-4aa8-beed-bc1e975a43a5
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.