PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
2020 | 80 | 2 |

Tytuł artykułu

Effects of HCN channel blockade on the intensity‑response function of electroretinographic ON and OFF responses in dark adapted frogs

Warianty tytułu

Języki publikacji

EN

Abstrakty

EN
Hyperpolarization‑activated and cyclic nucleotide‑gated (HCN) channels are well expressed in the vertebrate retina. Their role in formation of electroretinographic (ERG) responses to stimulus onset (b‑wave) and stimulus offset (d‑wave) are largely unknown. In this study we investigated the effects of pharmacological blockade of HCN channels (with ZD7288 or ivabradine) on the ERG b‑ and d‑waves in dark adapted frog eyecup preparations. Initially, the dose‑response relationship of ZD7288 effects on the b‑ and d‑waves was investigated. Afterwards, the effects of 75 μM ZD7288 on the stimulus ‑ response function of the ERG b‑ and d‑waves were explored over a wide intensity range (10 log units). Finally, the effects of 30 μM ivabradine on the same function were studied. Perfusion with 75 μM ZD7288 did not change the absolute and relative sensitivity of the ERG ON and OFF responses. It caused an enhancement of the d‑wave amplitude at all suprathreshold stimulus intensities, while the b‑wave amplitude was slightly enhanced only in the range of higher intensities. As a result of the greater blocker effect on the OFF response amplitude, the b/d amplitude ratio was significantly decreased over the whole intensity range. ZD7288 caused a prolongation of the b‑wave half‑width duration, but a shortening of the d‑wave half‑width duration at higher intensities. Similar results were obtained when 30 μM ivabradine was used for HCN channel blockade. Our results clearly demonstrate that the blockade of retinal HCN channels changes the balance between the ON and OFF responses in the distal frog retina. This ON/OFF imbalance may be one of the causes for visual disturbances reported in ivabradine treated patients.

Słowa kluczowe

Wydawca

-

Rocznik

Tom

80

Numer

2

Opis fizyczny

p.192-204,fig.,ref.

Twórcy

autor
  • Department of Physiology, Medical University of Sofia, Sofia, Bulgaria
autor
  • Department of Physiology, Medical University of Sofia, Sofia, Bulgaria

Bibliografia

  • Barrow AJ, Wu SM (2009) Low‑conductance HCN1 ion channels augment the frequency response of rod and cone photoreceptors. J Neurosci 29: 5841–5853.
  • Bemme S, Weick M, Gollisch T (2017) Differential effects of hcn channel block on on and off pathways in the retina as a potential cause for medication‑induced phosphene perception. Invest Ophthalmol Vis Sci 58: 4754–4767.
  • Borer JS, Fox K, Jaillon P, Lerebours G (2003) Ivabradine Investigators Group. Antianginal and antiischemic effects of ivabradine, an I(f) inhibi‑ tor, in stable angina: a randomized, double‑blind, multicentered, place‑ bo‑controlled trial. Circulation 107: 817–823.
  • Bucchi A, Tognati A, Milanesi R, Baruscotti M, DiFrancesco D (2006) Properties of ivabradine‑induced block of HCN1 and HCN4 pacemaker channels. J Physiol 572: 335–346.
  • Cangiano  L, Gargini C, Della Santina  L, Demontis GC, Cervetto  L (2007) High‑pass filtering of input signals by the Ih current in a  non‑spiking neuron, the retinal rod bipolar cell. PLoS One 2: e1327.
  • Cervetto L, Demontis GC, Gargini C (2007) Cellular mechanisms underlying the pharmacological induction of phosphenes. Br J Pharmacol 150: 383–390.
  • Chen  L, Yang XL (2007) Hyperpolarization‑activated cation current is in‑ volved in modulation of the excitability of rat retinal ganglion cells by dopamine. Neuroscience 150: 299–308.
  • Cui P, Li XY, Zhao Y, Li Q, Gao F, Li LZ, Yin N, Sun XH, Wang Z (2017) Activation of dopamine D1 receptors enhances the temporal summation and excitability of rat retinal ganglion cells. Neuroscience 355: 71–83.
  • Della Santina L, Bouly M, Asta A, Demontis GC, Cervetto L, Gargini C (2010) Effect of HCN channel inhibition on retinal morphology and function in normal and dystrophic rodents. Invest Ophthalmol Vis Sci 51: 1016–1023.
  • Della Santina  L, Piano I, Cangiano  L, Caputo A, Ludwig A, Cervetto  L, Gargini C (2012) Processing of retinal signals in normal and HCN deficient mice. PLoS One 7: e29812.
  • Della Santina L (2009) Electrophysiological investigations on the role of ret‑ inal HCN channels. PhD thesis, University of Pisa, Italy. Demontis GC, Gargini C, Paoli TG, Cervetto L (2009) Selective Hcn1 channels inhibition by ivabradine in mouse rod photoreceptors. Invest Oph‑ thalmol Vis Sci 50: 1948–55.
  • Frishman LJ (2013). Electrogenesis of the electroretinogram. In: Ryan SJ, Hinton DR, Sadda SR, Schachat AP, Wilkinson CP, Wiedemann P, editors. Retina. 5th ed. Elsevier Health Sciences: p.177–201.
  • Frishman LJ (2006) Origins of the electroretinogram. In: Heckenlively JR, Arden GB, editors. Principles and Practice of Clinical Electrophysiology of Vision 2nd ed. London: MIT Press: p.139–183.
  • Fyk‑Kolodziej B, Pourcho RG (2007) Differential distribution of hyperpolar‑ ization‑activated and cyclic nucleotide‑gated channels in cone bipolar cells of the rat retina. J Comp Neurol 501: 891–903.
  • Gargini C, Demontis GC, Bisti S, Cervetto L (1999) Effects of blocking the hyperpolarization‑activated current (Ih) on the cat electroretinogram. Vision Res 39: 1767–1774.
  • Hellmer CB, Zhou Y, Fyk‑Kolodziej B, Hu Z, Ichinose T (2016) Morphological and physiological analysis of type‑5 and other bipolar cells in the mouse retina. Neuroscience 315: 246–258.
  • Ivanova E, Müller F (2006) Retinal bipolar cell types differ in their inventory of ion channels. Vis Neurosci 23: 143–154.
  • Kim IB, Lee EJ, Kang TH, Chung JW, Chun MH (2003) Morphological analysis of the hyperpolarization‑activated cyclic nucleotide‑gated cation channel 1 (HCN1) immunoreactive bipolar cells in the rabbit retina. J Comp Neurol 467: 389–402.
  • Knop GC, Seeliger MW, Thiel F, Mataruga A, Kaupp UB, Friedburg C, Tanimoto N, Müller F (2008) Light responses in the mouse retina are prolonged upon targeted deletion of the HCN1 channel gene. Eur J Neurosci 28: 2221–2230.
  • Koizumi A, Jakobs TC, Masland RH (2004) Inward rectifying currents sta‑ bilize the membrane potential in dendrites of mouse amacrine cells: patch‑clamp recordings and single‑cell RT‑PCR. Mol Vis 10: 328–340.
  • Kupenova P, Popova E, Vitanova  L (2017) Purinergic modulation of frog electroretinographic responses: The role of the ionotropic receptor P2X 7. Visual Neurosci 34: e015.
  • Kupenova TN (2011) An inductive algorithm for smooth approximation of functions. Commun JINR, Dubna, E11–2011–97.
  • Lee SC, Ishida AT (2007) Ih without Kir in adult rat retinal ganglion cells. J Neurophysiol 97: 3790–3799.
  • Lei B, Zhang K, Yao G, Fan X, Hawes NL, Chang B (2007) Supernormal dark‑adapted electroretinogram b‑wave in hyperpolarization‑activated cyclic nucleotide‑gated channel 1 (HCN1) knockout mice. Invest Oph‑ thalmol Vis Sci 48: 1938.
  • Ma YP, Cui J, Hu HJ, Pan ZH (2003) Mammalian retinal bipolar cells express inwardly rectifying K+ currents (IKir) with a different distribution than that of Ih. J Neurophysiol 90: 3479–3489.
  • Mataruga A, Kremmer E, Müller F (2007) Type 3a and type 3b OFF cone bipolar cells provide for the alternative rod pathway in the mouse retina. J Comp Neurol 502: 1123–1137.
  • Müller F, Scholten A, Ivanova E, Haverkamp S, Kremmer E, Kaupp UB (2003) HCN channels are expressed differentially in retinal bipolar cells and concentrated at synaptic terminals. Eur J  Neurosci 17: 2084–2096.
  • Naka KI, Rushton WAH (1966) S‑potentials from colour units in the retina of fish (Cyprinidae). J Physiol 185: 536–555.
  • Pan Y, Bhattarai S, Modestou M, Drack AV, Chetkovich DM, Baker SA (2014) TRIP8b is required for maximal expression of HCN1 in the mouse retina. PLoS One 9: e85850.
  • Popova E, Kupenova P (2011) Effects of dopamine D1 receptor blockade on the intensity‑response function of ERG b‑ and d‑waves under different conditions of light adaptation. Vision Res 51: 1627–1636.
  • Popova E, Kupenova P (2013) Effects of dopamine receptor blockade on the intensity‑response function of ERG b‑ and d‑waves in dark adapted eyes. Vision Res 88: 22–29.
  • Popova E, Kupenova P (2016) Effects of histamine on the intensity‑re‑ sponse function of the electroretinographic b‑ and d‑waves in dark adapted frog eyes. Intern J Ophthalmol Vis Sci 1: 1–7.
  • Sartiani L, Mannaioni G, Masi A, Novella Romanelli M, Cerbai E (2017) The Hyperpolarization‑activated cyclic nucleotide‑gated channels: from biophysics to pharmacology of a unique family of ion channels. Pharmacol Rev 69: 354–395.
  • Satoh TO, Yamada M (2000) A bradycardiac agent ZD7288 blocks the hyperpolarization‑activated current (Ih) in retinal rod photoreceptors. Neuropharmacology 39: 1284–1291.
  • Seeliger MW, Brombas A, Weiler R, Humphries P, Knop G, Tanimoto  N, Müller F (2011) Modulation of rod photoreceptor output by HCN1 channels is essential for regular mesopic cone vision. Nat Commun 2: 532.
  • Shin KS, Rothberg BS, Yellen G (2001) Blocker state dependence and trapping in hyperpolarization‑activated cation channels: evidence for an in‑ tracellular activation gate. J Gen Physiol 117(2): 91–101.
  • Stradleigh TW, Ogata G, Partida GJ, Oi H, Greenberg KP, Krempely KS, Ishida AT (2011) Colocalization of hyperpolarization‑activated, cyclic nucleotide‑gated channel subunits in rat retinal ganglion cells. J Comp Neurol 519: 2546–2573.
  • Van Hook MJ, Berson DM (2010) Hyperpolarization‑activated current (Ih) in ganglion‑cell photoreceptors. PLoS One 5: e15344.
  • Vinberg FJ, Strandman S, Koskelainen A (2009) Origin of the fast negative ERG component from isolated aspartate‑treated mouse retina. J Vis 9: 1–17.
  • Wu S, Gao W, Xie C, Xu X, Vorvis C, Marni F, Hackett AR, Liu Q, Zhou L (2012) Inner activation gate in S6 contributes to the state‑dependent binding of cAMP in full‑length HCN2 channel. J Gen Physiol 140: 29–39.
  • Yang J, Pahng J, Wang GY (2013) Dopamine modulates the off pathway in light‑adapted mouse retina. J Neurosci Res 91: 138–150.

Typ dokumentu

Bibliografia

Identyfikatory

Identyfikator YADDA

bwmeta1.element.agro-45217298-bd6f-4363-a200-6de5e4424eae
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.