PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
2013 | 35 | 01 |

Tytuł artykułu

Cloning and expression analysis of MuNAC4 transcription factor protein from horsegram (Macrotyloma uniflorum (Lam.) Verdc.) conferred salt stress tolerance in Escherichia coli

Warianty tytułu

Języki publikacji

EN

Abstrakty

EN
The NAC gene family encodes plant-specific transcription factors which play diverse roles in abiotic stress responses of plants. NAC TFs reported to be involved in the regulatory pathway of multiple abiotic stresses. In the present study, a salt stress-inducible NAC gene, named MuNAC4 (Macrotyloma uniflorum NAC4) from horsegram was isolated, cloned, characterized and studied its expression. Real-time PCR expression analysis showed up-regulation of MuNAC4 in horsegram across salinity, cold, drought and dehydration stress conditions. However, salt stress resulted a sixfold increase in MuNAC4 transcript levels. The involvement of MuNAC4 in abiotic stress tolerance was investigated by cloning MuNAC4 gene in expression vector pET28a and transformation in Escherichia coli BL21 (DH3). The apparent molecular weight of the recombinant protein was found to be 38.3 kDa as evident from SDS-PAGE analysis. The functional role of MuNAC4 in Escherichia coli confers the tolerance against salt (6 % NaCl), heavy metal (100 mM CuSO4) and water stresses (6 % PEG). The E. coli cells transformed with pET28a ? MuNAC4 was showed better survival ratio and higher growth rates under NaCl stress than other abiotic stress conditions when compared to control cells (BL21/ pET28a). This provides the experimental evidence that MuNAC4 protein enhance salt stress tolerance of E. coli cells suggesting their suitability as candidates for genetic manipulations for enhanced crop tolerance to salt stress and other abiotic stresses.

Słowa kluczowe

Wydawca

-

Rocznik

Tom

35

Numer

01

Opis fizyczny

p.139-146,fig.,ref.

Twórcy

  • Department of Botany, Plant Molecular Biology Unit, Sri Krishnadevaraya University, Anantapur 515 003, India
autor
  • Department of Botany, Plant Molecular Biology Unit, Sri Krishnadevaraya University, Anantapur 515 003, India
autor
  • Department of Botany, Plant Molecular Biology Unit, Sri Krishnadevaraya University, Anantapur 515 003, India
autor
  • Department of Botany, Plant Molecular Biology Unit, Sri Krishnadevaraya University, Anantapur 515 003, India
  • Department of Botany, Plant Molecular Biology Unit, Sri Krishnadevaraya University, Anantapur 515 003, India
  • Department of Botany, Plant Molecular Biology Unit, Sri Krishnadevaraya University, Anantapur 515 003, India
autor
  • Department of Botany, Plant Molecular Biology Unit, Sri Krishnadevaraya University, Anantapur 515 003, India
  • Department of Botany, Plant Molecular Biology Unit, Sri Krishnadevaraya University, Anantapur 515 003, India
  • Department of Botany, Plant Molecular Biology Unit, Sri Krishnadevaraya University, Anantapur 515 003, India
autor
  • Department of Botany, Plant Molecular Biology Unit, Sri Krishnadevaraya University, Anantapur 515 003, India

Bibliografia

  • Chaurasia N, Mishra Y, Rai LC (2008) Cloning expression, analysis of phytochelatin synthase (pcs) gene from Anabaena sp. PCC 7120 offering multiple stress tolerance in Escherichia coli. Biochem Biophys Res Commun 376:225–230
  • Chen YN, Slabaugh E, Brandizzi F (2008) Membrane-tethered transcription factors in Arabidopsis thaliana: novel regulators in stress response and development. Curr Opin Plant Biol 11:695–701
  • Duval M, Hsieh TF, Kim SY, Thomas TL (2002) Molecular characterization of AtNAM: a member of the Arabidopsis NAC domain superfamily. Plant Mol Biol 50:237–248
  • Fujita M, Fujita Y, Maruyama K, Seki M, Tran LSP, Yamaguchi-Shinozaki K, Shinozaki K (2004) A dehydration induced NAC protein, RD26, is involved in a novel ABA-dependent stress signaling pathway. Plant J 39:863–876
  • Garay-Arroyo A, Colmenero-Flores JM, Garciarrubio A, Covarrubias AA (2000) High hydrophilic proteins in prokaryotes and eukaryotes are common during conditions of water deficit. J Biol Chem 275:5668–5674
  • Gupta K, Agarwal PK, Reddy MK, Jha B (2010) SbDREB2A, an A-2 type DREB transcription factor from extreme halophyte Salicornia brachiata confers abiotic stress tolerance in Escherichia coli. Plant Cell Rep 29:1131–1137
  • Hibara K, Takada S, Tasaka M (2003) CUC1 gene activates the expression of SAM-related genes to induce adventitious shoot formation. Plant J 36:687–696
  • Hong GX, Jiang J, Wang BC, Li HY, Wang YC, Yang CP, Liu GF (2010) ThPOD3, a truncated polypeptide from Tamarix hispida, conferred drought tolerance in Escherichia coli. Mol Biol Rep 37:1183–1190
  • Kim SG, Kim SY, Park CM (2007) A membrane-associated NAC transcription factor regulates salt-responsive flowering via flowering locust in Arabidopsis. Planta 226:647–654
  • Kim SG, Lee AK, Yoon HK, Park CM (2008) A membrane-bound NAC transcription factor NTL8 regulates gibberellic acidmediated salt signaling in Arabidopsis seed germination. Plant J 55:77–88
  • Kim YS, Kim SG, Park JE, Park HY, Lim MH, Chua NH, Park CM (2006) A membrane- bound NAC transcription factor regulates cell division in Arabidopsis. Plant Cell 18:3132–3144
  • Lan Y, Cai D, Zheng YZ (2005) Expression in Escherichia coli of three different group soybean LEA genes to investigate enhanced stress tolerance. Acta Bot Sin 47:5
  • Liu Y, Zheng Y (2005) PM2, a group 3 LEA protein from soybean, and its 22-mer repeating region confer salt tolerance in Escherichia coli. Biochem Biophys Res Commun 31:325–332
  • Lowry OH, Rosebrough NJ, Farr AL, Randall RJ (1951) Protein measurement with foline phenol reagent. J Biol Chem 193: 265–275
  • Olsen AN, Ernst HA, Leggio LL, Skriver K (2005) NAC transcription factors: structurally distinct, functionally diverse. Trends Plant Sci 10:79–87
  • Peng H, Yu X, Cheng H, Shi Q, Zhang H, Li J, Ma H (2009) Cloning and characterization of a novel NAC family gene CarNAC1 from chickpea (Cicer arietinum L.). Mol Biotech 4:814
  • Pinheiro GL, Marques CS, Costa MD, Reis PA, Alves MS, Carvalho CM, Fietto LG, Fontes EP (2009) Complete inventory of soy bean NAC transcription factors: sequence conservation and expression analysis uncover their distinct roles in stress response. Gene 444:10–23
  • Reddy PC, Sairanganayakulu G, Thippeswamy M, Sudhakar Reddy P, Reddy MK, Sudhakar C (2008) Identification of stressinduced genes from the drought tolerant semi-arid legume crop horsegram (Macrotyloma uniflorum (Lam.) Verdc.) through analysis of subtracted expressed sequence tags. Plant Sci 175: 372–384
  • Reddy PS, Mallikarjuna G, Kaul T, Chakradhar T, Mishra RN, Sopory SK, Reddy MK (2010) Molecular cloning and characterization of gene encoding for cytoplasmic Hsc70 from Pennisetum glaucum may play a protective role against abiotic stresses. Mol Gen Genet 283:243–254
  • Riechmann J, Heard G, Martin L, Reuber CZ, Jiang J, Keddie L, Adam O, Pineda OJ, Ratcliffe RR, Samaha R, Creelman M, Pilgrim P, Broun JZ, Zhang D, Ghandehari BK, Sherman G, Yu L (2000) Arabidopsis transcription factors: genome wide comparative analysis among eukaryotes. Science 290:2105–2110
  • Sambrook J, Russell DW (2001) Molecular cloning: a laboratory manual, 3rd edn. Cold Spring Harbor Laboratory Press, New York Shinozaki K, Yamaguchi-Shinozaki K (2007) Gene networks involved in drought stress response and tolerance. J Exp Bot 58:221–227
  • Singh K, Foley RC, Onate-Sanchez L (2002) Transcriptional factors in plant defense and stress responses. Curr Opin Plant Biol 5:430–436
  • Takada S, Hibara K, Ishida T, Tasaka M (2001) The CUP-SHAPED COTYLEDON1 gene of Arabidopsis regulates shoot apical meristem formation. Development 128:1127–1135
  • Tran LSP, Nakashima K, Simpson S, Seki M, Shinozaki K, Yamaguchi-Shinozaki K (2004) Isolation and functional analysis of Arabidopsis stress-inducible NAC transcription factors that bind to a drought-responsive cis-element in the early responsive to dehydration stress promoter. Plant Cell 16:2481–2498
  • Vincour B, Altman A (2005) Recent advances in engineering plant tolerance to abiotic stress: achievements and limitations. Curr Opin Plant Biol 16:123–132
  • Vroemen CW, Mordhorst AP, Albrecht C, Kwaaitaal MA, de Vries SC (2003) The CUP-SHAPED COTYLEDON3 gene is required for boundary and shoot meristem formation in Arabidopsis. Plant Cell 15:1563–1577
  • Wang W, Vinocur B, Altman A (2003) Plant responses to drought, salinity and extreme temperatures: towards genetic engineering for stress tolerance. Planta 218:1–14
  • Wu Y, Deng Z, Lai Y, Zhang Y, Yang C, Yin B, Zhao Q, Zhang L, Li Y, Xie Q (2009) Dual function of Arabidopsis ATAF1 in abiotic and biotic stress responses. Cell Res 19:1279–1290
  • Xie Q, Frugis G, Colgan D, Chua NH (2000) Arabidopsis NAC1 transduces auxin signal downstream of TIR1 to promote lateral root development. Genes Dev 14:3024–3036
  • Xiong L, Zhu JK (2002) Molecular and genetic aspects of plant responses to osmotic stress. Plant Cell Environ 25:131–139
  • Yamada A, Sekifuchi M, Mimura T, Ozeki Y (2002) The role of plant CCTa in salt- and osmotic-stress tolerance. Plant Cell Physiol. 43:1043–1048
  • Yamaguchi-Shinozaki K, Shinozaki K (2006) Transcriptional regulatory networks in cellular responses and tolerance to dehydration and cold stress. Annu Rev Plant Biol 57:781–803

Uwagi

rekord w opracowaniu

Typ dokumentu

Bibliografia

Identyfikatory

Identyfikator YADDA

bwmeta1.element.agro-44fac6e3-5eca-43d3-9691-a6e28b5de9f6
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.