PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
2019 | 28 | 4 |

Tytuł artykułu

Industrial effluents harbor a unique diversity of fungal community structures as revealed by high-throughput sequencing analysis

Warianty tytułu

Języki publikacji

EN

Abstrakty

EN
The actual extent of fungal diversity in different environmental media is still a subject of ongoing research. Little is currently known about the diversity of fungal populations in industrial streams. This study characterized the fungal diversity of different industrial effluents using a high-throughput sequencing approach. A total of 234617 quality filtered reads were obtained from the collected wastewater samples. Phylogenetic taxonomy revealed that resident fungal communities were classified as 6 phyla, 31 classes, 79 orders, 144 families, and 192 genera. Ascomycota and Basidiomycota were the most dominant phyla whose relative abundance ranged from 23.29% to 38.31%, and 17.34% to 33.51%, respectively. Recovered operational taxonomic units (OTUs) ranged from 292 (Dixon) to 427 (Capegate). The existence of some fungal genera identified in the industrial wastewaters correlated to physicochemical variables and had the potential to play important roles in organic decomposition, pollutant degradation, and xenobiotic transformation. Meanwhile, the occurrence of unclassified fungal sequences (22.5% to 33.09%) suggests that these effluents are a potential reservoir of as-yet uncharacterized fungal species.

Słowa kluczowe

Wydawca

-

Rocznik

Tom

28

Numer

4

Opis fizyczny

p.2353-2362,fig.,ref.

Twórcy

  • Department of Agriculture and Environmental Sciences, UNISA Florida Campus, Florida, South Africa
autor
  • Department of Biological Sciences, University of Namibia, Windhoek, Namibia
autor
  • Center for Ecological Genomics and Wildlife Conservation, Department of Zoology, University of Johannesburg, South Africa
autor
  • Department of Agriculture and Environmental Sciences, UNISA Florida Campus, Florida, South Africa

Bibliografia

  • 1. ORISAKWE O.E., ASOMUGHA R., AFONNE O.J., ANISI C.N., OBI E., DIOKA C.E. Impact of effluents from a car battery manufacturing plant in Nigeria on water, soil, and food qualities. Arch. Environ. Health. 59 (1), 31, 2004.
  • 2. TEKERE M., SIBANDA T., MAPHANGWA K.W. An assessment of the physicochemical properties and toxicity potential of carwash effluents from professional carwash outlets in Gauteng Province, South Africa. Environ. Sci. Pollut. Res. 23 (12), 11876, 2016.
  • 3. BASSIN J.P., RACHID C.T. C.C., VILELA C., CAO S. M.S., PEIXOTO R.S., DEZOTTI M. Revealing the bacterial profile of an anoxic-aerobic moving-bed biofilm reactor system treating a chemical industry wastewater. Int. Biodeterior. Biodegrad. 120, 152, 2017.
  • 4. RANJARD L., LEJON D.P.H., MOUGEL C., SCHEHRER L., MERDINOGLU D., CHAUSSOD R. Sampling strategy in molecular microbial ecology: Influence of soil sample size on DNA fingerprinting analysis of fungal and bacterial communities. Environ. Microbio. 5 (11), 1111, 2003.
  • 5. SOMBOONNA N., ASSAWAMAKIN A., WILANTHO A., TANGPHATSORNRUANG S., TONGSIMA S. Metagenomic profiles of free-living archaea, bacteria and small eukaryotes in coastal areas of Sichang island, Thailand. BMC genomics. 13 (7), S29, 2012.
  • 6. LEE Z. M.P., PORET-PETERSON A.T., SIEFERT J.L., KAUL D., MOUSTAFA A., ALLEN A.E., ELSER J.J. Nutrient stoichiometry Shapes Microbial Community Structure in an Evaporitic Shallow Pond. Front. Microbiol. 8 (6), 1, 2017.
  • 7. MAGNABOSCO C., TEKERE M., LAU M. C.Y., LINAGE B., KULOYO O., ERASMUS M., ONSTOTT T. C. Comparisons of the composition and biogeographic distribution of the bacterial communities occupying South African thermal springs with those inhabiting deep subsurface fracture water. Front. Microbiol. 5 (679), 1, 2014.
  • 8. RAMGANESH S., TIMOTHY S., MEMORY T. Thermophilic bacterial communities inhabiting the microbial mats of “indifferent” and chalybeate (iron-rich) thermal springs: diversity and biotechnological analysis. Microbiol. open. Accepted In press. 2017.
  • 9. SELVARAJAN R., SIBANDA T., TEKERE M., NYONI H., MEDDOWS-TAYLOR S. Diversity Analysis and Bioresource Characterization of Halophilic Bacteria Isolated from a South African Saltpan. Molecules. 22 (4), 657, 2017.
  • 10. ABED R. M.M., KLEMPOVA T., GAJDOS P., CERTIK M. Bacterial diversity and fatty acid composition of hypersaline cyanobacterial mats from an inland desert wadi. J. Arid Environ. 115, 81, 2015.11. KAMIKA I., AZIZI S., TEKERE M. Microbial profiling of South African acid mine water samples using next generation sequencing platform. Appl. Microbiol. Biotechnol.100, 6069, 2016.
  • 12. SHCHEGOLKOVA N.M., KRASNOV G.S., BELOVA A.A., DMITRIEV A.A., KHARITONOV S. L., KLIMINA K. M., KUDRYAVTSEVA A. V. Microbial community structure of activated sludge in treatment plants with different wastewater compositions. Front. Microbiol. 7 (2), 1, 2016.
  • 13. MEERBERGEN, K., VAN GEEL, M., WAUD, M., WILLEMS, K.A., DEWIL, R., VAN IMPE, J., LIEVENS, B. Assessing the composition of microbial communities in textile wastewater treatment plants in comparison with municipal wastewater treatment plants. Microbiol. open. 6 (1), 1, 2017.
  • 14. SEKAR S., ZINTCHEM A.A.E.A., KESHRI J., KAMIKA I., MOMBA M.N.B. Bacterial profiling in brine samples of the Emalahleni water reclamation plant, South Africa, using 454-pyrosequencing method. FEMS Microbiol. Lett. 359 (1), 55, 2014.
  • 15. MA Q., QU Y., SHEN W., ZHANG Z., WANG J., LIU Z., ZHOU, J. Bacterial community compositions of coking wastewater treatment plants in steel industry revealed by Illumina high-throughput sequencing. Bioresour. Technol. 179, 436, 2015.
  • 16. MAZA-MÁRQUEZ P., VILCHEZ-VARGAS R., KERCKHOF F.M., ARANDA E., GONZÁLEZ-LÓPEZ J., RODELAS B. Community structure, population dynamics and diversity of fungi in a full-scale membrane bioreactor (MBR) for urban wastewater treatment. Water Res. 105, 507, 2016.
  • 17. SANNINO F., NUZZO A., VENTORINO V., PEPE O., PICCOLO, A. Effective degradation of organic pollutants in aqueous media by microbial strains isolated from soil of a contaminated industrial site. Chem. Biol. Technol. Agric. 3 (1), 2, 2016.
  • 18. SENTHILKUMAR S., PERUMALSAMY M., JANARDHANA PRABHU H. Decolourization potential of white-rot fungus Phanerochaete chrysosporium on synthetic dye bath effluent containing Amido black 10B. J. Saudi Chem. Soc. 18 (6), 845, 2014.
  • 19. LAPP K., VODISCH M., KROLL K., STRASSBURGER M., KNIEMEYER O., HEINEKAMP T., BRAKHAGE A.A. Characterization of the Aspergillus fumigatus detoxification systems for reactive nitrogen intermediates and their impact on virulence. Front. Microbiol. 5 (9), 1, 2014.
  • 20. NIU L., LI Y., XU L., WANG P., ZHANG W., WANG C., WANG L. Ignored fungal community in activated sludge wastewater treatment plants: diversity and altitudinal characteristics. Environ. Sci. Pollut. Res. 24 (4), 4185, 2017.
  • 21. GHOSAL D., GHOSH S., DUTTA T.K., AHN Y. Current state of knowledge in microbial degradation of polycyclic aromatic hydrocarbons (PAHs): A review. Front. Microbiol. 7 (8), 1369, 2016.
  • 22. APHA. Standard Methods for the Examination of Water and Wastewater, 20th ed.; American Public Health Association: Washington, DC, 2001.
  • 23. OP DE BEECK M., LIEVENS B., BUSSCHAERT P., DECLERCK S., VANGRONSVELD J., COLPAERT, J.V. Comparison and validation of some ITS primer pairs useful for fungal metabarcoding studies. PLoS One. 9 (6), e97629, 2014.
  • 24. CHEN C., KHALEEL S.S., HUANG H., WU C.H. Software for pre-processing Illumina next-generation sequencing short read sequences. Source Code Biol. Med. 9 (8), 1, 2014.
  • 25. SCHLOSS P.D., WESTCOTT S.L., RYABIN T., HALL J.R., HARTMANN M., HOLLISTER E.B., LESNIEWSKI R.A., OAKLEY B.B., PARKS D.H., ROBINSON C.J., SAHL J.W., STRES B., THALLINGER G.G., VAN HORN D.J., WEBER C.F. Introducing mothur: OpenSource, Platform-Independent, Community-Supported Software for Describing and Comparing Microbial Communities. Appl. Environ. Microbiol. 75 (23), 7537, 2009.
  • 26. EDGAR R.C., HAAS B.J., CLEMENTE J.C., QUINCE C., KNIGHT R. UCHIME improves sensitivity and speed of chimera detection. Bioinformatics 27 (16), 2194, 2011.
  • 27. DWA. Revision of General Authorisations in Terms of Section 39 of the National Water Act, 1998 (Act No. 36 of 1998) (the Act). Gazette. 19182, 42, 2013.
  • 28. SHRESTHA A. M., NEUPANE S., BISHT, G. An Assessment of Physicochemical Parameters of Selected Industrial Effluents in Nepal. J. Chem. 2017, 1, 2017.
  • 29. GROSSART H.P., WURZBACHER C., JAMES T.Y., KAGAMI, M. Discovery of dark matter fungi in aquatic ecosystems demands a reappraisal of the phylogeny and ecology of zoosporic fungi. Fungal Ecol. 19, 28, 2016.
  • 30. FERREIRA V., GONÇALVES A.L., PRATAS J., CANHOTO C. Contamination by uranium mine drainages affects fungal growth and interactions between fungal species and strains. Mycologia 102 (5), 1004, 2010.
  • 31. TAHIR A. Resistant Fungal Biodiversity of Electroplating Effluent and Their Metal Tolerance Index. In Electroplating. Lahore: InTech, 137, 2012.
  • 32. MONEY N.P. Fungal diversity. In S.C. Watkinson, L. Boddy, N.P. Money (Eds.), The Fungi (Third Edii.,). Academic press. 1, 2016.
  • 33. PERALTA R.M., SILVA B.P., CORRÊA R.C.G., KATO C.G., SEIXAS F.A.V., BRACHT A. Enzymes from basidiomycetes: peculiar and efficient tools for biotechnology. In G. Brahmachari, A.L. Demain J.L. Adrio (Eds.), Biotechnology of Microbial Enzymes: Production, Biocatalysis and Industrial Applications. Academic Press, London. 119, 2017.
  • 34. GUNSCH C.K., CHENG Q., KINNEY K.A., SZANISZLO P.J., WHITMAN C.P. Identification of a homogentisate-1,2-dioxygenase gene in the fungus Exophiala lecaniicorni: Analysis and implications. Appl. Microbiol. Biotechnol. 68 (3), 405, 2005.
  • 35. WANG H.L., NIE L., LIJ., WANG Y.F., WANG G., WANG J.H., HAO Z.P. Characterization and assessment of volatile organic compounds (VOCs) emissions from typical industries. Chinese Sci. Bul. 58 (7), 724, 2013.
  • 36. AWAD M.F., KRAUME M. Fungal diversity in activated sludge from membrane bioreactors in Berlin. Can. J. Microbiol. 57 (8), 693, 2011.
  • 37. REHMAN A., SOHAIL ANJUM M., HASNAIN S. Cadmium biosorption by yeast, Candida tropicalis CBL-1, isolated from industrial wastewater. J. Gen. Appl. Microbiol. 56 (5), 359, 2010.
  • 38. ELMALEH S., DEFRANCE M., GHOMMIDH C. Organic acids oxidation by Candida utilis: application to industrial waste water treatment. Process Biochem. 35 (5), 441, 1999.
  • 39. OH S.Y., FONG J.J., PARK M.S., CHANG L., LIM Y.W. Identifying airborne fungi in Seoul, Korea using metagenomics. J. Microbiol. 52 (6), 465, 2014.
  • 40. BAHRAM M., VANDERPOOL D., PENT M., HILTUNEN M., RYBERG M. The genome and microbiome of a dikaryotic fungus ( Inocybe terrigena, Inocybaceae) revealed by metagenomics. Environ. Microbiol. Rep. 2018.
  • 41. BUÉE A.M., REICH M., MURAT C., MORIN E., NILSSON R.H., UROZ S., MUR C. 454 Pyrosequencing analyses of forest soils reveal an high fungal diversity unexpectedly. New Phytol. 184 (2), 449, 2014.
  • 42. VIEGAS C., FARIA T., GOMES A.Q., SABINO R., SECO A., VIEGAS S. Fungal Contamination in Two Portuguese Wastewater Treatment Plants. J. Toxicol. Environ. Heal. Part A 77 (1-3), 90, 2014.
  • 43. ABD EL-ZAHER E.H.F., ABOU-ZEID A.M., MOSTAFA A.A., ARIF D.M. Industrial oil wastewater treatment by free and immobilized Aspergillus niger KX759617 and the possibility of using it in crop irrigation. Rend Lincei. 28 (1), 93, 2017.
  • 44. NHI-CONG L.T., MAI C.T.N., MINH N.N., HA H.P., LIEN D.T., TUAN D. VAN UYEN D.T.T. Degradation of sec-hexylbenzene and its metabolites by a biofilmforming yeast Trichosporon asahii B1 isolated from oil-contaminated sediments in Quangninh coastal zone, Vietnam. J. Environ. Sci. Heal - Part A Toxic/Hazardous Subst. Environ. Eng. 51 (3), 267, 2016.
  • 45. LAKSHMI V., NILANJANA D. Biodegradation of Caffeine by Trichosporon asahii Isolated from Caffeine Contaminated Soil. Int. J. Eng. Sci. Technol. 3 (11), 7988, 2011.
  • 46. SUGIMORI D. Edible oil degradation by using yeast coculture of Rhodotorula pacifica ST3411 and Cryptococcus laurentii ST3412. Appl. Microbiol. Biotechnol. 82 (2), 351, 2009.
  • 47. ELLEGAARD-JENSEN L., AAMAND J., KRAGELUND B.B., JOHNSEN A.H., ROSENDAHL S. Strains of the soil fungus Mortierella show different degradation potentials for the phenylurea herbicide diuron. Biodegradation. 24 (6), 765, 2013.
  • 48. NARENDRULA-KOTHA R., NKONGOLO K.K. Bacterial and fungal resilience to long-term metal exposure in a mining region revealed by metagenomics sequencing. Ecol. Genet. Genomics. 2, 13, 2016.

Typ dokumentu

Bibliografia

Identyfikatory

Identyfikator YADDA

bwmeta1.element.agro-44ba48ee-2ff8-4ee5-beb0-832e75284785
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.