Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
2014 | 23 | 3 |
Tytuł artykułu

The performance of species mixtures in nitrogen and phosphorus removal at different hydraulic retention times

Warianty tytułu
Języki publikacji
The effects of species compositions (two-species mixtures or monocultures) and hydraulic retention times (HRT; 1, 4, 8, 16, 24, 48 hours) on total nitrogen (TN) and total phosphorus (TP) removal from eutrophic water were studied in a constructed wetland. Two species mixtures showed higher efficiency to remove TN and TP than monocultures. Average removal efficiency of TN and TP was 49.6% and 34.0%, respectively. A longer HRT enhanced the removal efficiency of TN and TP, which suggested that species mixtures, HRT, and species mixtures × HRT interaction were useful for increasing the wastewater TN and TP removal.
Opis fizyczny
  • College of Life Sciences, Zhejiang University, Hangzhou 310058, PR China
  • College of Life Sciences, Shaoxing University, Shaoxing 312000, PR China
  • College of Life Sciences, Zhejiang University, Hangzhou 310058, PR China
  • College of Life Sciences, Zhejiang University, Hangzhou 310058, PR China
  • College of Life Sciences, Zhejiang University, Hangzhou 310058, PR China
  • 1. LI X. N., SONG H. L., LU X. W., XIE X. F., INAMORI Y. Characteristics and mechanisms of the hydroponic bio-filter method for purification of eutrophic surface water. Ecol. Eng. 35, 1574, 2009.
  • 2. SCHEREN P.A.G.M., ZANTING H.A., LEMMENS A.M.C. Estimation of water pollution sources in Lake Victoria, East Africa: application and elaboration of the rapid assessment methodology. J. Environ. Manage. 58, 235, 2000.
  • 3. JIANG J. G., SHEN Y. F. Estimation of the natural purification rate of aeutrophic lake after pollutant removal. Ecol. Eng. 28, 166, 2006.
  • 4. VYMAZAL J. Removal of nutrients in various types of constructed wetlands. Sci. Total Environ. 380, 48, 2007.
  • 5. WANG H., CHEN Z.X., ZHANG X.Y., ZHU S. X., GE Y., CHANG S.X., ZHANG C.B., HUANG C.X., CHANG J. Plant species richness increased belowground plant biomass and substrate nitrogen removal in a constructed wetland. Clean-Soil, Air, Water, 41, (7), 657, 2013.
  • 6. CHUNG A.K.C., WU Y., TAM N.F.Y., WONG M.H. Nitrogen and phosphate mass balance in a sub-surface flow constructed wetland for treating municipal wastewater. Ecol. Eng. 32, 81, 2008.
  • 7. BRIX H. Functions of macrophytes in constructed wetlands. Water Sci. Technol. 29, (4), 71, 1994.
  • 8. CAO H.Q., GE Y., LIU D., CHANG S.X., WANG X.Y., CHANG J. Nitrate/ammonium ratios affect ryegrass growth and nitrogen accumulation in a hydroponic system. J. Plant Nutr. 34, 1, 2011.
  • 9. GRÜNEBERG B., KERN J. Phosphorus retention capacity of iron-ore and blast furnace slag in subsurface flow constructed wetlands. Water Sci. Technol. 44, (11-12), 69, 2001.
  • 10. CHANG J., LIU D., CAO H.Q., CHANG S.X., WANG X.Y., HUANG C.C., GE Y. NO₃⁻/NH₄ ⁺ ratios affect the growth and N removal ability of Acorus calamus and Iris pseudacorus in a hydroponic system. Aquat. Bot. 93, 216, 2010.
  • 11. JAMPEETONG A., BRIX H., KANTAWANICHKUL S. Effects of inorganic nitrogen forms on growth, morphology, nitrogen uptake capacity and nutrient allocation of four tropical aquatic macrophytes (Salvinia cucullata, Ipomoea aquatica, Cyperus involucratus and Vetiveria zizanioides). Aquat. Bot. 97, 10, 2012.
  • 12. ZHANG C.B., WANG J., LIU W.L., ZHU S.X., GE H.L., CHANG S.X., CHANG J., GE Y. Effects of plant diversity on microbial biomass and community metabolic profiles in a full-scale constructed wetland. Ecol. Eng. 36, 62, 2010.
  • 13. ZHU S.X., GE H.L., GE Y., CAO H.Q., LIU D., CHANG J., ZHANG C.B., GU B.J., CHANG S.X. Effects of plant diversity on biomass production and substrate nitrogen in a subsurface vertical flow constructed wetland. Ecol. Eng. 36, 1307, 2010.
  • 14. ENGELHARDT K.A.M., RITCHIE M.E. The effect of aquatic plant species richness on wetland ecosystem processes. Ecology 83, 2911, 2002.
  • 15. CALLAWAY J.C., SULLIVAN G., ZEDLER J.B. Speciesrich plantings increase biomass and nitrogen accumulation in a wetland restoration experiment. Ecol. Appl. 13, 1626, 2003.
  • 16. LIANG M.Q., ZHANG C.F., PENG C.L., LAI Z.L., CHEN D.F., CHEN Z.H. Plant growth, community structure, and nutrient removal in monoculture and mixed constructed wetlands. Ecol. Eng. 37, 309, 2011.
  • 17. GUO Q.H., MA K.M., YANG L., CAI Q.H., HE K. A comparative study of the impact of species compositions on a freshwater phytoplankton community using two contrasting biotic indices. Ecol. Indic. 10, 296, 2010.
  • 18. NAGAIKE T., KAMITANI T., NAKASHIZUKA T. Plant species diversity in abandoned coppice forests in a temperate deciduous forest area of central Japan. Plant Ecol. 166, 145, 2003.
  • 19. TÁRREGA R., CALVO L., TABOADAÁ., GARCÍA-TEJERO S., MARCOS E. Abandonment and management in Spanish dehesa systems: Effects on soil features and plant species richness and composition. Forest Ecol. Manage. 257, 731, 2009.
  • 20. DIEZ J.M., PULLIAM H.R. Hierarchical analysis of species distributions and abundance across environmental gradients. Ecology 88, 3144, 2007.
  • 21. ENGELHARDT K.A.M., RITCHIE M.E. Effect of macrophyte species richness on wetland ecosystem functioning and services. Nature 411, 687, 2001.
  • 22. TOET S., VAN LOGTESTIJN R.S.P., KAMPF R., SCHREIJER M., VERHOEVEN J.T.A. The effect of hydraulic retention time on the removal of pollutants from sewage treatment plant effluent in a surface-flow wetland system. Wetlands 25, 375, 2005.
  • 23. SIRIANUNTAPIBOON S., KONGCHUM M., JITVIMOLNIMIT S. Effects of hydraulic retention time and media of constructed wetland for treatment of domestic wastewater. Afr. J. Agric. Res. 1, 27, 2006.
  • 24. SEPA (State Environment Protection Administration). Standard methods for water and wastewater monitoring and analysis, 4th ed.; China Environment Press: Beijing, 2009 [In Chinese].
  • 25. FISHER J., STRATFORD C.J., BUCKTON S. Variation in nutrient removal in three wetland blocks in relation to vegetation composition, inflow nutrient concentration and hydraulic loading. Ecol. Eng. 35, 1387, 2009.
  • 26. SCHULTZ R.E., BOUCHARD V.L., FREY S.D. Overyielding and the role of complementary use of nitrogen in wetland plant communities. Aquat. Bot. 97, 1, 2012.
  • 27. BARDGETT R.D., STREETER T.C., BOL R. Soil microbes compete effectively with plants for organic-nitrogen inputs to temperate grasslands. Ecology 84, 1277, 2003.
  • 28. AKARATOS C.S., TSIHRINTZIS V.A. Effect of temperature, HRT, vegetation and porous media on removal efficiency of pilot-scale horizontal subsurface flow constructed wetlands. Ecol. Eng. 29, 173, 2007
Typ dokumentu
Identyfikator YADDA
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.