PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
2003 | 05 | Suppl. |

Tytuł artykułu

Molecular phylogenetics of the chiropteran family Vespertilionidae

Warianty tytułu

Języki publikacji

EN

Abstrakty

EN
Limited information from existing data sets and the tremendous amount of diversity in number and kind within the chiropteran family Vespertilionidae (about one-third of all bat species) have hampered efforts to provide adequate assessments of long-standing genealogic hypotheses (e.g., monophyly of the family and of the five subfamilies). We generated approximately 2.6 kilobase pairs of mitochondrial DNA (mtDNA) sequence ecompassing three adjacent genes (12S rRNA, tRNAVal, 16S rRNA) for 120 vespertilionids representing 110 species, 37 of 44 genera, and all subfamilies. We assessed monophyly of Vespertilionidae in initial analyses of 171 taxa including representatives of all bat families (except the monotypic Craseonycteridae), and assessed lower-level relationships by analysis of several truncated taxon sets. Phylogenetic analysis of ribosomal gene sequences provides well-supported resolution for vespertilionid relationships across taxonomic levels. Furthermore, the resolution is not heavily burdened by alignment of ambiguous regions of the ribosomal gene sequences, and topologies and levels of support produced by two phylogenetic methods (Bayesian and Parsimony) agreed markedly. Our analyses suggest relationships that support many parts of the traditional classification but which also support several changes. The majority of these changes also receives support from other data sources, particularly bacular and karyotypic data. We make more than 20 taxonomic conclusions or recommendations and construct a working classification for vespertilionoid bats. Highlights include: Miniopterus (subfamily Miniopterinae) is recognized in its own family, Miniopteridae, as it represents an extremely divergent lineage relative to other vespertilionids, and in some analyses is sister to the molossids and natalids; all other vespertilionids examined form a well-supported clade; two of the traditional subfamilies within Vespertilionidae (sensu stricto) are monophyletic, Murininae and Kerivoulinae; Nyctophilinae has no validity and Vespertilioninae is paraphyletic relative to the position of Myotis; Myotis is sister to a clade containing Kerivoulinae and Murininae and is recognized in its own subfamily, Myotinae; Myotis subgenera Leuconoe, Selysius, and Myotis are polyphyletic, and a subgeneric classification reflecting geography is suggested, broadening subgenus Myotis to include the sampled Old World species, and allocating the sampled New World species to another subgenus (Aeorestes Fitzinger, 1870); Vespertilioninae (excluding Myotis) is monophyletic; Pipistrellus-like bats (i.e., the traditional tribe Vespertilionini) are divided into three tribes (Nycticeiini; Pipistrellini; Vespertilionini); and support for three tribes of Pipistrellus-like bats has several implications at the genus level. Overall, this study offers a robust working hypothesis for vespertilionid relationships and provides a good starting point for new investigations into the evolutionary history of Vespertilionidae.

Słowa kluczowe

Wydawca

-

Rocznik

Tom

05

Numer

Opis fizyczny

p.1-63,fig.,ref.

Twórcy

autor
  • Department of Zoology and Collection of Vertebrates, Oklahoma State University, Stillwater, Oklahoma 74078, USA

Bibliografia

  • Adams, M., P. R. Baverstock, C. H. S. Watts, and T. Reardon. 1987a. Electrophoretic resolution of species boundaries in Australian Microchiroptera. I. Eptesicus (Chiroptera: Vespertilionidae). Australian Journal of Science, 40: 143-162.
  • Adams, M., P. R. Baverstock, C. H. S. Watts, and T. Reardon. 1987b. Electrophoretic resolution of species boundaries in Australian Microchiroptera. II. The Pipistrellus group (Chiroptera:Vespertilionidae). Australian Journal of Science, 40: 163-170.
  • Alfaro, M. E., S. Zoller, and F. Lutzoni. 2003. Bayes or bootstrap? A simulation study comparing the performance of Bayesian Markov chain Monte Carlo sampling and bootstrapping in assessing phylogenetic confidence. Molecular Biology and Evolution, 20: 255-266.
  • Alvarez, Y., J. Juste, E. Tabares, A. Garrido-Pertierra, C. Ibanez, and J. M. Bautista. 1999. Molecular phylogeny and morphological homoplasy in fruitbats. Molecular Biology and Evolution, 16: 1061-1067.
  • Anderson, S., M. H. L. de Bruiln, A. R. Coulson, I. C. Eperon, F. Sanger, and I. G. Young. 1982. Complete sequence of bovine mitochondrial DNA: conserved features of the mammalian mitochondrial genome. Journal of Molecular Biology, 156: 683-717.
  • Avise, J. C. 1986. Mitochondrial DNA and the evolutionary genetics of higher animals. Philosophical Transactions of the Royal Society of London B, 12: 325-342.
  • Avise, J. C., W. S. Nelson, and C. G. Sibley. 1994. Why one-kilobase sequences from mitochondrial DNA fail to solve the hoatzin phylogenetic enigma. Molecular Phylogenetics and Evolution, 3: 175-184.
  • Baker, R. J. 1970. The role of karyotypes in phylogenetic studies of bats. Pp. 303-312, in About bats: a chiropteran biology symposium (B. H. Slaughter and D. W. Walton, eds.). Southern Methodist University Press, Dallas, Texas, 339 pp.
  • Baker, R. J., and J. L. Patton. 1967. Karyotypes and karyotypic variation of North American vespertilionid bats. Journal of Mammalogy, 48: 270-286.
  • Baker, R. J., J. W. Bickham, and M. L. Arnold. 1985. Chromosomal evolution in Rhogeessa (Chiroptera: Vespertilionidae): possible speciation by centric fusions. Evolution, 39: 233-243.
  • Baker, R. J., J. C. Patton, H. H. Genoways, and J. W. Bickham. 1988. Genic studies of Lasiurus (Chiroptera: Vespertilionidae). Occasional Papers, The Museum, Texas Tech University, 117: 1-15.
  • Baker, R. J., C. A. Porter, J. C. Patton, and R. A. Van Den Bussche. 2000. Systematics of bats of the family Phyllostomidae based on RAG2 DNA sequences. Occasional Papers, Museum of Texas Tech University, 202: i + 1-16.
  • Baker, R. J., S. R. Hoofer, C. A. Porter, and R. A. Van Den Bussche. 2003. Diversification among New World leaf-nosed bats: an evolutionary hypothesis and classification inferred from digenomic congruence of DNA sequence. Occasional Papers, Museum of Texas TechUniversity, 230: i + 1-32.
  • Barkley, L. J. 1984. Evolutionary relationships and natural history of Tomopeas ravus (Mammalia: Chiroptera). M.Sci. Thesis, Louisiana State University, Baton Rouge, 100 pp.
  • Baverstock, P. R., and C. Moritz. 1996. Project design. Pp. 17-27, in Molecular systematics. Second edition (D. M. Hillis, C. Moritz and B. K. Mable, eds.). Sinauer Associates, Inc., Publishers, Sunderland, Massachusetts, 655 pp.
  • Benedict, F. A. 1957. Hair structure as a generic character in bats. University of California Publications in Zoology, 59: i-iv + 285-548.
  • Berbee, M. L. 1996. Loculoascomycete origins and evolution of filamentous ascomycetes morphology based on 18S rRNA gene sequence data. Molecular Biology and Evolution, 13: 462-470.
  • Beuttell, K., and J. B. Losos. 1999. Ecological morphology of Caribbean anoles. Herpetological Monograph, 13: 1-28.
  • Bickham, J. W. 1979a. Banded karyotypes of 11 species of American bats (genus Mvotis). Cytolo- gia, 44: 789-797.
  • Bickham, J. W. 1979b. Chromosomal variation and evolutionary relationships of vespertilionid bats. Journal of Mammalogy, 60: 350-363.
  • Bickham, J. W. 1987. Chromosomal variation among seven species of lasiurine bats (Chiroptera: Vespertilionidae). Journal of Mammalogy, 68: 837-842.
  • Bickham, J. W., K. McBee, and D. A. Schlitter. 1986. Chromosomal variation among seven species of Myotis (Chiroptera: Vespertilionidae). Journal of Mammalogy, 67: 746-750.
  • Bogdanowicz, W., S. Kasper, and R. D. Owen. 1998. Phylogeny of plecotine bats: reevaluation of morphological and chromosomal data. Journal of Mammalogy, 79: 78-90.
  • Bossuyt, F., and M. C. Milinkovitch. 2000. Convergent adaptive radiations in Madagascan and Asian ranid frogs reveal covariation between larval and adult traits. Proceedings of the National Academy of Science, USA, 97: 6585-6590.
  • Breed, W. G., and R. W. Inns. 1985. Variation in sperm morphology of Australian Vespertilionidae and its possible phylogenetic significance. Mammalia, 49: 105-108.
  • Bremer, K. 1992. Ancestral areas: a cladistic reinterpretation of the center of origin concept. Systematic Biology, 41: 436-445.
  • Brown, W. M. 1985. The mitochondrial genome of animals. Pp. 95-130, in Molecular evolutionary genetics: monographs in evolutionary biology (R. J. MacIntyre, ed.). Plenum, New York, 610 pp.
  • Bruns, T. D., R. Vilgalys, S. M. Barns, D. Gonzalez, D. S. Hibbett, D. J. Lane, L. Simon, S. Stickel, T. M. Szaro, W. G. Weisburg, and M. L. Sogin. 1992. Evolutionary relationships within the fungi: Analyses of nuclear small subunit rRNA sequences. Molecular Phylogenetics and Evolution, 1: 231-241.
  • Buckley, T. R., P. Arensburger, C. Simon, and G. K. Chambers. 2002. Combined data, Bayesian phylogenetics, and the origin of the New Zealand Cicada genera. Systematic Biology, 51: 4-18.
  • Cassens, I., S. Vicario, V. G. Waddell, H. Balchowsky, D. Van Belle, W. Ding, C. Fan, R. S. Lal Mohan, P. C. Simoes-Lopes, R. Bastida, A. Meyer, M. J. Stanhope, and M. C. Milinkovitch. 2000. Independent adaptation to riverine habitats allowed survival of ancient cetacean lineages. Proceedings of the National Academy of Science, USA, 97: 11343-11347.
  • Cerchio, S., and P. Tucker. 1998. Influence of alignment on the mtDNA phylogeny of Cetacea: questionable support for a Mysticeti/Physeteroidea clade. Systematic Biology, 47: 336-344.
  • Corbet, G. B., and J. E. Hill. 1986. A world list of mammalian species. Second edition. British Museum of Natural History, 254 pp.
  • Corbet, G. B., and J. E. Hill. 1991. A world list of mammalian species. Third edition. Natural History Museum Publications, Oxford University Press, New York, 243 pp.
  • Corbet, G. B., and J. E. Hill. 1992. The mammals of the Indomalayan region. Natural History Museum Publications, Oxford University Press, New York, 488 pp.
  • Csorba, G., and L. Lee. 1999. A new species of vespertilionid bat from Taiwan and a revision of the taxonomic status of Arielulus and Thainycteris (Chiroptera: Vespertilionidae). Journal of Zoology (London), 248: 361-367.
  • Czaplewski, N. J., G. S. Morgan, and S. A. McLeod. In press. Chiroptera. In Evolution of Tertiary mammals of North America, Vol. 2 (C. Janis, G. Gunnell, and M. Uhen, eds.). Cambridge University Press, Cambridge, UK.
  • de Quieroz, K., and J. Gauthier. 1990. Phytogeny as a central principle in taxonomy: Phylogenetic definitions of taxon names. Systematic Zoology, 39: 307-322.
  • de Quieroz, K., and J. Gauthier. 1992. Phylogenetic taxonomy. Annual Review of Ecology and Systematics, 23: 449-480.
  • de Quieroz, K., and J. Gauthier. 1994. Toward a phylogenetic system of biological nomenclature. Trends in Ecology and Evolution, 9: 27-31.
  • De Rijk, P., Y. van de Peer, S. Chapella, and R. D. Wachter. 1994. Database on the structure of the large ribosomal subunit RNA. Nucleic Acids Research, 22: 3495-3501.
  • DeSalle, R., C. Wray, and R. Absher. 1994. Computational problems in molecular systematics. Pp. 353-370, in Molecular ecology and evolution: approaches and applications (B. Schierwater, B. Streit, G. P. Wagner and R. DeSalle, eds.). Birkhäuser, Basel, 622 pp.
  • Dobson, G. E. 1875. On the genus Chalinolobus, with descriptions of new or little known species. Proceedings of the Zoological Society of London, 3: 381-388.
  • Dobson, G. E. 1878. Catalogue of the Chiroptera in the collection of the British Museum. Trustess of the British Museum, London, 567 pp.
  • Douady, C. J., F. Delsuc, Y. Boucher, W. F. Doolittle, and J. P. Douzery. 2003. Comparison of Bayesian and Maximum Likelihood bootstrap measure of phylogenetic reliability. Molecular Biology and Evolution, 20: 248-254.
  • Efron, B., E. Halloran, and S. Holmes. 1996. Bootstrap confidence levels for phylogenetic trees. Proceedings of the National Academy of Science, USA, 93: 13429-13434.
  • Eger, J. L., and D. A. Schlitter. 2001. A new species of Glauconycteris from West Africa (Chiroptera: Vespertilionidae). Acta Chiropterologica, 3: 1-10.
  • Farris, J. S. 1969. A successive approximations approach to character weighting. Systematic Biology, 18: 374-385.
  • Felsenstein, J. 1978. Cases in which parsimony or compatibility methods will be positively misleading. Systematic Zoology, 27: 401-410.
  • Felsenstein, J. 1981. A likelihood approach to character weighting and what it tells us about parsimony and compatibility. Biological Journal of the Linnaean Society, 16: 183-196.
  • Felsenstein, J. 1985. Confidence limits on phytogenies: An approach using the bootstrap. Evolution, 39: 783-791.
  • Fenton, M. B., and M. R. Barclay. 1980. Myotis lucifugus. Mammalian Species, 142: 1-8.
  • Fenton, M. B., and W. Bogdanowicz. 2002. Relationships between external morphology and foraging behaviour: bats in the genus Myotis. Canadian Journal of Zoology, 80: 1004-1013.
  • Findley, J. S. 1972. Phenetic relationships among bats of the genus Myotis. Systematic Zoology, 21 : 31-52.
  • Fitch, W. M., and T. F. Smith. 1983. Optimal sequence alignments. Proceedings of the National Academy of Science, USA, 80: 1382-1386.
  • Forman, G. L., R. J. Baker, and J. D. Gerber. 1968. Comments on the systematic status of vampire bats (family Desmodontidae). Systematic Zoology, 17:417-425.
  • Freeman, P. W. 1998. Form, function, and evolution in skulls and teeth of bats. Pp. 140-156, in Bat biology and conservation (T. H. Kunz and P. A. Racey, eds.). Smithsonian Institution Press, Washington, D.C., 365 pp.
  • Frost, D. R., and R. M. Timm. 1992. Phylogeny of plecotine bats (Chiroptera: ‘Vespertilionidae’): summary of the evidence and proposal of a logically consistent taxonomy. American Museum Novitates, 3034: 1-16.
  • Gatesy, J., R. DeSalle, and W. Wheeler. 1993. Alignment-ambiguous nucleotide sites and the exclusion of systematic data. Molecular Phylogenetics and Evolution, 2: 152-157.
  • Giribet, G., and W. C. Wheeler. 1999. On gaps. Molecular Phylogenetics and Evolution, 13: 132-143.
  • Godawa Stormark, J. 1998. Phenetic analysis of Old World Myotis (Chiroptera: Vespertilionidae) based on dental characters. Acta Theriologica, 43: 1-11.
  • Gopalakrishna, A., and G. C. Chari. 1983. A review of the taxonomic position of Miniopterus based on embryological characters. Current Science, 52: 1176-1180.
  • Gopalakrishna, A., and K. B. Karim. 1980. Female genital anatomy and the morphogenesis of foetal membranes of Chiroptera and their bearing on the phylogenetic relationships of the group. National Academy of Sciences, India Golden Jubilee Commemoration Volume, 380-428.
  • Gouy, M., and W.-H. Li. 1989. Phylogenetic analysis based on rRNA sequences supports the archaebacterial rather than the eocyte tree. Nature, 339: 145-147.
  • Graybeal, A. 1998. Is it better to add taxa or characters to a difficult phylogenetic problem? Systematic Biology, 47: 9-17.
  • Guindon, S., and O. Gascuel. 2003. A simple, fast, and accurate algorithm to estimate large phylogenies by maximum likelihood. Systematic Biology, 52: 696-704.
  • Hall, B. G. 2001. Phylogenetic trees made easy: a how-to manual for molecular biologists. Sinauer Associates, Inc., Publishers, Sunderland, Massachussetts, 179 pp.
  • Hall, E. R., and J. K. Jones, Jr. 1961. North American yellow bats, ‘Dasypterus,’ and a list of the named kinds of the genus Lasiurus Gray. University of Kansas Publications, Museum of Natural History, 14: 73-98.
  • Hamilton, W. J., Jr. 1949. The bacula of some North American vespertilionid bats. Journal of Mammalogy, 30: 97-102.
  • Handley, C. O., Jr. 1959. A revision of American bats of the genera Euderma and Plecotus. Proceedings of the United States National Museum, 110: 95-246.
  • Handley, C. O., Jr. 1960. Description of new bats from Panama. Proceedings of the United States National Museum, 112: 459-479.
  • Hayman, R. W, and J. E. Hill. 1971. Order Chiroptera. Part 2. In The mammals of Africa; an identification manual (J. Meester and H. W. Setzer, eds.). Smithsonian Institution Press, Washington, D.C.,481 pp.
  • Heller, K.-G., and M. Volleth. 1984. Taxonomic position of ‘ Pipistrellus societatis’ Hill, 1972 and the karyological characteristics of the genus Eptesicus (Chiroptera: Vespertilionidae). Zeitschrift für Zoologische Systematik und Evolutions-forschung, 22: 65-77.
  • Hickson, R. E., C. Simon, and S. W. Perrey. 2000. The performance of several multiple-sequence alignment programs in relation to secondary-structure features for an rRNA sequence. Molecular Biology and Evolution, 17: 530-539.
  • Hill, J. E. 1974. A new family, genus and species of bat (Mammalia; Chiroptera) from Thailand. Bulletin of the British Museum of Natural History (Zoology), 27: 301-336.
  • Hill, J. E., and D. L. Harrison. 1987. The baculum in the Vespertilioninae (Chiroptera: Vespertilionidae) with a systematic review, a synopsis of Pipistrellus and Eptesicus, and the descriptions of a new genus and subgenus. Bulletin of the British Museum of Natural History (Zoology), 52: 225-305.
  • Hill, J. E., and S. E. Smith. 1981. Craseonycteris thonglongyai. Mammalian Species, 160: 1-4.
  • Hill, J. E., and J. D. Smith. 1984. Bats: a natural history. University of Texas Press, Austin, 243 pp.
  • Hill, J. E., and G. Topál. 1973. The affinities of Pipistrellus ridleyi Thomas, 1898 and Glischropus rosseti Oey, 1951 (Chiroptera, Vespertilionidae). Bulletin of the British Museum of Natural History (Zoology), 24: 447-454.
  • Hillis, D. M. 1998. Taxonomic sampling, phylogenetic accuracy, and investigator bias. Systematic Biology, 47: 3-8.
  • Hillis, D. M., and J. J. Bull. 1993. An empirical test of bootstrapping as a method for assessing confidence in phylogenetic analysis. Systematic Biology, 42: 182-192.
  • Hollar, L. J., and M. S. Springer. 1997. Old World fruitbat phylogeny: Evidence for convergent evolution and an endemic African clade. Proceedings of the National Academy of Science, USA, 94: 5716-5721.
  • Hoofer, S. R., and R. A. Van Den Bussche. 2001. Phylogenetic relationships of plecotine bats and allies based on mitochondrial ribosomal sequences. Journal of Mammalogy, 82: 131-137.
  • Hoofer, S. R., S. A. Reeder, E. W. Hansen, and R. A. Van Den Bussche. 2003. Molecular phylogenetics and taxonomic review of noctilionoid and vespertilionoid bats (Chiroptera: Yangochiroptera). Journal of Mammalogy, 84: 809-821.
  • Horáček, I. 1991. Enigma of Otonycteris: ecology, relationship, classification. Myotis, 29: 17-30.
  • Horáček, I. 2001. On the early history of vespertilionid bats in Europe: The Lower Miocene record from the Bohemian Massif. Lynx (Praha), 32: 123-154.
  • Horáček, I, and V. Hanák. 1985. Generic status of Pipistrellus savii (Bonaparte, 1837) and remarks on systematics of the genus Pipistrellus. Bat Research News, 26: 62.
  • Horáček, I., and V. Hanák. 1986. Generic status of Pipistrellus savii and comments on classification of the genus Pipistrellus (Chiroptera, Vespertilionidae). Myotis, 23-24: 9-16.
  • Huelsenbeck, J. P. 1995. The performance of phylogenetic methods in simulation. Systematic Biology, 44: 17-48.
  • Huelsenbeck, J. P., and F. Ronquist. 2001. MrBayes: Bayesian inference of phylogeny. Bioinformatics, 17: 754-755.
  • Huelsenbeck, J. P., B. Larget, R. E. Miller, and F. Ronquist. 2002. Potential applications and pitfalls of Bayesian inference of phylogeny. Systematic Biology, 51: 673-688.
  • Hulva, P., and I. Horáček. Craseonycteris thonglongyai (Chiropera: Craseonycteridae) is a rhinolopid: molecular evidence from cytochrome b. Acta Chiropterologica, 4: 107-120.
  • International Commission on Zoological Nomenclature. 1999. International code of zoological nomenclature. Fourth edition. International Trust for Zoological Nomenclature, London, xxix + 306 pp.
  • Jones, G., and J. M. V. Rayner. 1988. Flight performance, foraging tactics and echolocation in free-living Daubenton’s bats Myotis daubentoni (Chiroptera: Vespertilionidae). Journal of Zoology (London), 215: 113-132.
  • Jones, J. K., Jr., J. Arroyo-Cabrales, and R. D. Owen. 1988. Revised checklist of bats (Chiroptera) of Mexico and Central America. Occasional Papers, The Museum, Texas Tech University, 120: 1-34.
  • Jones, K. E., A. Purvis, A MacLarnon, O. R. P. Bininda-Emonds, and N. B. Simmons. 2002. A phylogenetic supertree of the bats (Mammalia: Chiroptera). Biological Reviews, 77: 223-259.
  • Karim, K. B., and K. P. Bhatnagar. 2000. Early embryology, fetal membranes, and placentation. Pp. 59-92, in Ontogeny, functional ecology, and evolution of bats (R. A. Adams and S. C. Pedersen, eds.). Cambridge University Press, Cambridge, 398 pp.
  • Kawai, K., M. Nikaido, M. Harada, S. Matsumura, L.-K. Lin, Y. Wu, M. Hasegawa, and N. Okada.
  • 2002. Intra- and interfamily relationships of Vespertilionidae inferred by various molecular markers including SINE insertion data. Journal of Molecular Evolution, 55: 284-301.
  • Kawai, K., M. Nikaido, M. Harada, S. Matsumura, L.-K. Lin, Y. Wu, M. Hasegawa, and N. Okada.
  • 2003. The status of the Japanese and East Asian bats of the genus Myotis (Vespertilionidae) based on mitochondrial sequences. Molecular Phylogenetics and Evolution, 28: 297-307.
  • Kearney, T. C., M. Volleth, G. Contrafatto, and P. J. Taylor. 2002. Systematic implications of chromosome GTG-band and bacula morphology for Southern African Eptesicus and Pipistrellus and several other species of Vespertilioninae (Chiroptera: Vespertilionidae). Acta Chiropterologica, 4: 55-76.
  • Kennedy, M., A. M. Paterson, J. C. Morales, S. Parsons, A. P. Winnington, and H. G. Spencer. 1999. The long and short of it: branch lengths and the problem of placing the New Zealand short-tailed bat, Mystacina. Molecular Phylogenetics and Evolution, 13: 405—416.
  • Kirsch, J. A. W., J. M. Hutcheon, D. G. P. Byrnes, and B. D. Lloyd. 1998. Affinities and historical zoogeography of the New Zealand short-tailed bat, Mystacina tuberculata Gray 1843, inferred from DNA-hybridization comparisons. Journal of Mammalian Evolution, 5: 33-64.
  • Kitchener, D. J., and N. Caputi. 1985. Systematic revision of Australian Scoteanax and Scotorepens (Chiroptera: Vespertilionidae), with remarks on relationships to other Nycticeiini. Records of the Western Australian Museum, 12: 85-146.
  • Kitchener, D. J., N. Caputi, and B. Jones. 1986. Revision of Australo-Papuan Pipistrellus and of Falsistrellus (Microchiroptera: Vespertilionidae). Records of the West Australian Museum, 12: 435-495.
  • Koopman, K. F. 1970. Zoogeography of bats. Pp. 29-50, in About bats: a chiropteran biology symposium (B. H. Slaughter and D. W. Walton, eds.). Southern Methodist University Press, Dallas, 339 pp.
  • Koopman, K. F. 1971. Taxonomic notes on Chalinolobus and Glauconycteris (Chiroptera, Vespertilionidae). American Museum Novitates, 245: 1-10.
  • Koopman, K. F. 1984. Bats. Pp. 145-186, in Orders and families of Recent mammals of the World (S. Anderson and J. K. Jones, Jr., eds.). John Wiley and Sons, New York, 686 pp.
  • Koopman, K. F. 1985. A synopsis of the families of bats, part VII. Bat Research News, 25: 25-27 [dated 1984 but issued 1985],
  • Koopman, K. F. 1993. Order Chiroptera. Pp. 137-241, in Mammal species of the World, a taxonomic and geographic reference, second edition (D. E. Wilson and D. M. Reeder, eds.). Smithsonian Institution Press, Washington, D.C., 1207 pp.
  • Koopman, K. F. 1994. Chiroptera: systematics. Handbook of Zoology, Vol. 8, Part 60: Mamalia. Walter de Gruyter, Berlin, 224 pp.
  • Koopman, K. F., and E. L. Cockrum. 1967. Bats. Pp. 109-150, in Recent mammals of the world. Synopsis of families (S. Anderson and J. K. Jones, Jr., eds.). The Ronald Press Company, New York, 453 pp.
  • Koopman, K. F., and J. K. Jones, Jr. 1970. Classification of bats. Pp. 22-28, in About bats: a chiropteran biology symposium (B. H. Slaughter and D. W. Walton, eds.). Southern Methodist University Press, Dallas, Texas, 339 pp.
  • Kuzjakin, A. P. 1950. Letučije myši. Sovetskaja nauka, Moskva, 444 pp.
  • Lake, J. 1991. The order of sequence alignment can bias the selection of tree topology. Molecular Biology and Evolution, 8: 378-385.
  • Larget, B., and D. L. Simon. 1999. Markov chain Monte Carlo algorithms for the Bayesian analysis of phylogenetic trees. Molecular Biology and Evolution, 16: 750-759.
  • Leaché, A. D., and T. W. Reeder. 2002. Molecular systematics of the eastern fence lizard (Sceloporus undulatus): a comparison of parsimony, likelihood, and Bayesian approaches. Systematic Biology, 51: 44-68.
  • Lee, T. E., Jr., S. R. Hoofer, and R. A. Van Den Bussche. 2002. Molecular phylogenetics and taxonomic revision of the genus Tonatia (Chiroptera: Phyllostomidae). Journal of Mammalogy, 83: 49-57.
  • Leniec, H., S. Fedyk, and A. L. Ruprecht. 1987. Chromosomes of some species of vespertilionid bats IV: New data on the plecotine bats. Acta Theriologica, 32: 307-314.
  • Lewis, P. O. 2001. Phylogenetic systematics turns over a new leaf. Trends in Ecology and Evolution, 16: 30-37.
  • Li, S. 1996. Phylogenetic tree construction using Markov chain Monte Carlo. Ph.D. Thesis, Ohio State University, Columbus, USA.
  • Lloyd, D. G., and V. L. Calder. 1991. Multi-residue gaps, a class of molecular characters with exceptional reliability for phylogenetic analyses. Journal of Evolutionary Biology, 4: 9-21.
  • Longmire, J. L., M. Maltbie, and R. J. Baker. 1997. Use of ‘lysis buffer’ in DNA isolation and its implication for museum collections. Occasional Papers, The Museum, Texas Tech University, 163: 1-3.
  • Losos, J. B., T. R. Jackman, A. Larson, K. de Queiroz, and L. Rodriguez-Schettino. 1998. Contingency and determinism in replicated adaptive radiations of Island lizards. Science, 279: 2115-2117.
  • Lutzoni, F. 1995. Phylogeny of lichen- and non-lichen-forming omphalinoid mushrooms and the utility of testing for combinability among multiple data sets. Systematic Biology, 46: 373-406.
  • Lutzoni, F., P. Wagner, V. Reeb, and S. Zoller. 2000. Integrating ambiguously aligned regions of DNA sequences in phylogenetic analyses without violating positional homology. Systematic Biology, 49: 628-651.
  • Maddison, W. P., M. J. Donoghue, and D. R. Maddison. 1984. Outgroup analysis and parsimony. Systematic Zoology, 33: 83-103.
  • Mathews, L. H. 1942. Notes on the genitalia and reproduction of some African bats. Proceedings of the Zoological Society of London B, 111: 289-346.
  • Mau, B. 1996. Bayesian phylogenetic inference via Markov chain Monte Carlo methods. Ph. D. Thesis, University of Wisconsin, Madison, USA.
  • Mayer, F., and O. von Helversen. 2001. Cryptic diversity in European bats. Proceedings of the Royal Society of London B, 268: 1825-1832.
  • McBee, K., J. W. Bickham, S. Yenbutra, J. Nabhitabhata, and D. A. Schlitter. 1986. Standard karyology of nine species of vespertilionid bats (Chiroptera: Vespertilionidae) from Thailand. Annals of Carnegie Museum, 55: 95-116.
  • McBee, K., D. A. Schlitter, and R. L. Robbins, 1987. Systematics of African bats of the genus Eptesicus (Mammalia: Vespertiliondae). 2. Karyotypes of African species and their generic relationships. Annals of Carnegie Museum, 56: 213-222.
  • McKenna, M. C., and S. K. Bell. 1997. Classification of mammals above the species level. Columbia University Press, New York, 631 pp.
  • Mein, P., and Y. Tupinier. 1977. Formule dentaire et position systématique du Minioptère (Mammalia, Chiroptera). Mammalia, 41: 207-211.
  • Menu, H. 1984. Révision du statut de Pipistrellus subflavus (F. Cuvier, 1832). Proposition d’un taxon générique nouveau: Perimyotis nov. gen. Mammalia, 48: 409-416.
  • Menu, H. 1985. Morphotypes dentaires actuels et fossils des Chiroptères Vespertilioninés. Ie partie: Etude des morphologies dentaires. Palaeovertebrata, 15: 71-128.
  • Menu, H. 1987. Morphotypes dentaires actuels et fossils des Chiroptères Vespertilioninés. IIème partie: Implications systematiques et phylogeniques. Palaeovertebrata, 17: 77-150.
  • Miller, G. S., Jr. 1906. Twelve new genera of bats. Proceedings of the Biological Society of Washington, 19: 83-85.
  • Miller, G. S., Jr. 1907. The families and genera of bats. Bulletin of the United States National Museum, 57: 1-282.
  • Miller, G. S., Jr., and G. M. Allen. 1928. The American bats of the genera Myotis and Pizonyx. Bulletin of the United States National Museum, 144: 1-218.
  • Mindell, D. P. 1991. Aligning DNA sequences: homology and phylogenetic weighting. Pp. 73-89, in Phylogenetic analysis of DNA sequences (M. Miyamoto and J. Cracraft, eds.). Oxford University Press, Oxford, 358 pp.
  • Morales, J. C., and J. W. Bickham. 1995. Molecular systematics of the genus Lasiurus (Chiroptera: Vespertilionidae) based on restriction-site maps of the mitochondrial ribosomal genes. Journal of Mammalogy, 76: 730-749.
  • Morales, J. C., S. W. Ballinger, J. W. Bickham, I. F. Greenbaum, and D. A. Schlitter. 1991. Genetic relationships among eight species of Eptesicus and Pipistrellus (Chiroptera: Vespertilionidae). Journal of Mammalogy, 72: 286-291.
  • Mori, T., and T. A. Uchida. 1982. Changes in the morphology and behaviour of spermatozoa between copulation and fertilization in the Japanese long-fingered bat, Miniopterus schreibersii fuliginosus. Journal of Reproduction and Fertility, 65: 23-28.
  • Moritz, C., T. E. Dowling, and W. M. Brown. 1987. Evolution of animal mitochondrial DNA: relevance for population biology and systematics. Annual Review of Ecology and Systematics, 18: 269-292.
  • Morrison, D. A., and J. T. Ellis. 1997. Effects of nucleotide sequence alignment on phytogeny estimation: a case study of 18S rDNAs of Apicomplexa. Molecular Biology and Evolution, 14: 428-441.
  • Mossman, H. W. 1953. The genital system and the fetal membranes as criteria for mammalian phytogeny and taxonomy. Journal of Mammalogy, 34: 289-298.
  • Mossman, H. W. 1987. Vertebrate fetal membranes: Comparative ontogeny and morphology; evolution; phylogenetic significance; basic function; research opportunities. Rutgers University Press, New Brunswick, New Jersey, 383 pp.
  • Murphy, W. J., E. Eizirik, S. J. O’Brien, O. Madsen, M. Scally, C. J. Douady, E. Teeling, O. A. Ryder, M. J. Stanhope, W. W. de Jong, and M. S. Springer. 2001. Resolution of the early placental mammal radiation using Bayesian phylogenetics. Science, 294: 2348-2351.
  • Nowak, R. M. 1999. Walker’s mammals of the World. Sixth edition, Vol. 1, The Johns Hopkins University Press, Baltimore, Maryland, 836 pp.
  • Orti, G., and A. Meyer. 1997. The radiation of Characiform fishes and the limits of resolution of mitochondrial ribosomal DNA sequences. Systematic Biology, 46: 75-100.
  • Perasso, R., A. Baroin, H. Liang, J. Bachellerie, and A. Adoutte. 1989. Origin of the algae. Nature, 339: 142-144.
  • Peterson, R. L. 1982. A new species of Glauconycteris from the east coast of Kenya (Chiroptera: Vespertilionidae). Canadian Journal of Zoology, 60: 2521-2525.
  • Peterson, R. L., and D. A. Smith. 1973. A new species of Glauconycteris (Vespertilionidae, Chiroptera). Royal Ontario Museum Life Sciences Occasional Papers, 22: 1-9.
  • Pierson, E. D. 1986. Molecular systematics of the Microchiroptera: higher taxon relationships and biogeography. Ph.D. Thesis, University of California, Berkeley, 262 pp.
  • Pine, R. H., D. C. Carter, and R. K. LaVal. 1971. Status of Bauerus Van Gelder and its relationships to other nyctophiline bats. Journal of Mammalogy, 52: 663-669.
  • Pitra, C, and J. Veits. 2000. Use of mitochondrial DNA sequences to test the Ceratomorpha (Perissodactyla: Mammalia) hypothesis. Journal of Zoological, Systematics, and Evolutionary Research, 38: 65-72.
  • Poe, S. 1998. The effect of taxonomic sampling on accuracy of phylogeny estimation: test case of a known phylogeny. Molecular Biology and Evolution, 15: 1086-1090.
  • Posada, D., and K. A. Crandall. 1998. Modeltest: testing the model of DNA substitution. Bioinformatics, 14: 817-818.
  • Quinet, G. E. 1965. Myotis misonnei, chiroptère de l’Oligocène de Hoogbutsel. Bulletin de l’Institut Royal des Sciences Naturelles de Belgique, 41: 1-11.
  • Qumsiyeh, M. B., and J. W. Bickham. 1993. Chromosomes and relationships of long-eared bats of the genera Plecotus and Otonycteris. Journal of Mammalogy, 74: 376-382.
  • Rannala, B., and Z. H. Yang. 1996. Probability distribution of molecular evolutionary trees: a new method of phylogenetic inference. Journal of Molecular Evolution, 43: 304-311.
  • Rautenbach, I. L., G. N. Bronner, and D. A. Schlitter. 1993. Karyotypic data and attendant systematic implications for the bats of southern Africa. Koedoe, 36: 87-104.
  • Reep, R. L., and K. P. Bhatnagar. 2000. Brain ontogeny and ecomorphology in bats. Pp. 93-136, in Ontogeny, functional ecology, and evolution of bats (R. A. Adams and S. C. Pedersen, eds.). Cambridge University Press, Cambridge, 398 pp.
  • Robbins, C. B., F. De Vree, and V. Van Cakenberghe. 1985. A systematic revision of the African bat genus Scotophilus (Vespertilionidae). Annales Musée de l’Afrique Centrale, Sciences Zoologiques, 246: 51-84.
  • Roberts, A. 1926. Some new South African mammals and some changes in nomenclature. Annals of the Transvaal Museum, 11: 245-263.
  • Rosevear, D. R. 1965. The bats of West Africa. Trustees of the British Museum (Natural History), London, 418 pp.
  • Ruedas, L. A., T. E. Lee, Jr., J. W. Bickham, and D. A. Schlitter. 1990. Chromosomes of five species of vespertilionid bats from Africa. Journal of Mammalogy, 71: 94-100.
  • Ruedas, L. A., J. Salazar-Bravo, J. W. Dragoo, and T. L. Yates. 2000. The importance of being earnest: what, if anything, constitutes a ‘specimen examined?’ Molecular Phylogenetics and Evolution, 17: 129-132.
  • Ruedi, M., and R. Arlettaz. 1991. Biochemical systematics of the Savi’s bat (Hypsugo savii) (Chi- roptera: Vespertilionidae). Zeitschrift für Zoologische Systematik und Evolutions-forschung, 29: 115-122.
  • Ruedi, M., and F. Mayer. 2001. Molecular systematics of bats of the genus Myotis (Vespertilionidae) suggests deterministic ecomorphological convergences. Molecular Phylogenetics and Evolution, 21: 436-448.
  • Ryan, R. M. 1966. A new and some imperfectly known Australian Chalinolobus and the taxonomic status of African Glauconycteris. Journal of Mammalogy, 47: 86-91.
  • Sigé, B. 1974. Données nouvelles sur le genre Stehlinia (Vespertilionoidea, Chiroptera) du Paléogène d’Europe. Palaeovertebrata, 6: 253-272.
  • Simmons, N. B. 1998. A reappraisal of interfamilial relationships of bats. Pp. 3-26, in Bat biology and conservation (T. H. Kunz and P. A. Racey, eds.). Smithsonian Institution Press, Washington, D.C., 365 pp.
  • Simmons, N. B. 2000. Bat phylogeny: an evolutionary context for comparative studies. Pp. 9-58, in Ontogeny, functional ecology, and evolution of bats (R. A. Adams and S. C. Pedersen, eds.). Cambridge University Press, Cambridge, UK, 398 pp.
  • Simmons, N. B., and T. M. Conway. 2001. Phylogenetic relationships of mormoopid bats (Chiroptera: Mormoopidae) based on morphological data. Bulletin of the American Museum of Natural History, 258: 1-97.
  • Simmons, N. B., and J. H. Geisler. 1998. Phylogenetic relationships of Icaronycteris, Archaeonycteris, Hassianycteris, and Palaeochiropteryx to extant bat lineages, with comments on the evolution of echolocation and foraging strategies in Microchiroptera. Bulletin of the American Museum of Natural History, 235: 1-182.
  • Simon, C., F. Frati, A. Beckenbach, B. Crespi, H. Liu, and P. Flook. 1994. Evolution, weighting, and phylogenetic utility of mitochondrial gene sequences and a compilation of conserved polymerase chain reaction primers. Annals of the Entomological Society of America, 87: 651-701.
  • Simpson, G. G. 1945. The principles of classification and a classification of mammals. Bulletin of the American Museum of Natural History, 85: 1-350.
  • Skinner, J. D., and R. H. N. Smithers. 1990. The mammals of the southern African subregion. University of Pretoria, South Africa, 771 pp.
  • Smith, J. D. 1972. Systematics of the chiropteran family Mormoopidae. University of Kansas Museum of Natural History, Miscellaneous Publication, 56: 1-132.
  • Smith, J. D. 1976. Chiropteran phylogeny. Pp. 49-69, in Biology of bats of the New World Phyllostomatidae, Part I (R. J. Baker, J. K. Jones, Jr., and D. C. Carter eds.). Special Publications, The Museum, Texas Tech University, 10: 1-218.
  • Smith, J. D. 1980. Chiropteran phylogenetics: Introduction. Pp. 233-244, in Proceedings of the Fifth International Bat Research Conference (D. E. Wilson and A. L. Gardner, eds.). Texas Tech University Press, Lubbock, 434 pp.
  • Springer, M. S. 1997. Molecular clocks and the timing of the placental and marsupial radiations in relation to the Cretaceous-Tertiary boundary. Journal of Mammalian Evolution, 4: 285-302.
  • Springer, M. S., and E. Douzery. 1996. Secondary structure, conservation of functional sites, and rates of evolution among mammalian mitochondrial 12S rRNA genes based on sequences from placentals, marsupials, and a monotreme. Journal of Molecular Evolution, 43: 357-373.
  • Sudman, P. D., L. J. Barkley, and M. S. Hafner. 1994. Familial affinity of Tomopeas ravus (Chiroptera) based on protein electrophoretic and cytochrome b sequence data. Journal of Mammalogy, 75: 365-377.
  • Swofford, D. L. 2002. PAUP* phylogenetic analysis using parsimony (*and other methods). Version 4. Sinauer Associates, Inc., Publishers, Sunderland, Massachusetts.
  • Swofford, D. L., and G. J. Olsen. 1990. Phylogeny reconstruction. Pp. 411-501, in Molecular sys- tematics (D. M. Hillis and C. Moritz, eds.). Sinauer Associates, Sunderland, Massachusetts, 588 pp.
  • Swofford, D. L., G. J. Olsen, P. J. Waddell, and D. M. Hillis. 1996. Phylogenetic inference. Pp. 407-514, in Molecular systematics. Second edition (D. M. Hillis, C. Moritz, and B. K. Mable, eds.). Sinauer Associates, Inc., Publishers, Sunderland, Massachusetts, 655 pp.
  • Tate, G. H. H. 1941a. Results of the Archbold expeditions. No. 39. A review of the genus Myotis (Chiroptera) of Eurasia, with special reference to species occurring in the East Indies. Bulletin of the American Museum of Natural History, 78: 537-565.
  • Tate, G. H. H. 1941b. Results of the Archbold expeditions. No. 40. Notes on vespertilionid bats of the subfamilies Miniopterinae, Murininae, Kerivoulinae, and Nyctophylinae. Bulletin of the American Museum of Natural History, 80: 567-597.
  • Tate, G. H. H. 1942. Results of the Archbold expeditions. No. 47. Review of the vespertilionine bats, with special attention to genera and species of the Archbold collections. Bulletin of the American Museum of Natural History, 80: 221-297.
  • Teeling, E. C., M. Scally, D. J. Kao, M. L. Romagnoli, M. S. Springer, and M. J. Stanhope. 2000. Molecular evidence regarding the origin of echolocation and flight in bats. Nature, 403: 188-192.
  • Teeling, E. C., O. Madsen, R. A. Van Den Bussche, W. W. de Jong, M. J. Stanhope, and M S. Springer. 2002. Microbat paraphyly and the convergent evolution of a key innovation in Old World rhinolophoid microbats. Proceedings of the National Academy of Science, USA, 99: 1431-1436.
  • Teeling, E. C., O. Madsen, W. J. Murphy, M. S. Springer, and S. J. O’Brien. 2003. Nuclear gene sequences confirm an ancient link between New Zealand’s short-tailed bat and South American noctilionoid bats. Molecular Phylogenetics and Evolution, 28: 308-319.
  • Thompson, J. D., T. J. Gibson, F. Plewniak, F. Jeanmougin, and D. G. Higgins. 1997. The Clustal X windows interface: flexible strategies for multiple sequence alignment aided by quality analysis tools. Nucleic Acids Research, 24: 4876-4882.
  • Tiunov, M. P. 1989. The taxonomic implication of different morphological systems in bats. Pp. 67-76, in European bat research 1987 (V. Hanák, I. Horáček, and J. Gaisler, eds.). Charles University Press, Praha, 718 pp.
  • Topál, G. 1970. On the systematic status of Pipistrellus annectans Dobson, 1871 and Myotis primula Thomas, 1920 (Mammalia). Annales Historico-Naturales Musei Nationalis Hungarici, 62: 373-379.
  • Torpin, R. 1976. Eutherian mammalian phylogeny based upon embryology. The Anatomical Record, 184:547-548.
  • Tumlison, R., and M. E. Douglas. 1992. Parsimony analysis and the phylogeny of the plecotine bats (Chiroptera: Vespertilionidae). Journal of Mammalogy, 73: 276-285.
  • Turbeville, J. M., K G. Field, and R. A. Raff. 1992. Phylogenetic position of the Nemertini, inferred from 18S rRNA sequences: Molecular data as a test of morphological character analysis. Molecular Biology and Evolution, 9: 235-249.
  • Van Den Bussche, R. A., and S. R. Hoofer. 2000. Further evidence for inclusion of the New Zealand short-tailed bat (Mystacina tuberculata) within Noctilionoidea. Journal of Mammalogy, 81: 865-874.
  • Van Den Bussche, R. A., and S. R. Hoofer. 2001. Evaluating monophyly of Nataloidea (Chiroptera) with mitochondrial DNA sequences. Journal of Mammalogy, 82: 320-327.
  • Van Den Bussche, R. A., and S. R. Hoofer. In press. Phylogenetic relationships of Recent chiropte- ran families and the importance of choosing appropriate outgroup taxa. Journal of Mammalogy
  • Van Den Bussche, R. A., S. R. Hoofer, and N. B. Simmons. 2002. Phylogenetic relationships of mormoopid bats using mitochondrial gene sequences and morphology. Journal of Mammalogy, 83: 40-48.
  • Van Den Bussche, R. A., S. A. Reeder, E. W. Hansen, and S. R. Hoofer. 2003. Utility of the dentin matrix protein 1 (DMP1) gene for resolving mammalian intraordinal phylogenetic relationships. Molecular Phylogenetics and Evolution, 26: 89-101.
  • Van Der Merwe, M. 1985. The vestigial teeth of Miniopterus fraterculus and Miniopterus inflatus. South African Journal of Zoology, 20: 250-252.
  • Van Valen, L. 1979. The evolution of bats. Evolutionary Theory, 4: 103-121.
  • Verheyen, E., L. Ruber, J. Snoeks, and A. Meyer. 1996. Mitochondrial phylogeography of rockdwelling cichlid fishes reveals evolutionary influence of historical lake level fluctuations of Lake Tanganyika, Africa. Philosophical Transactions of the Royal Society of London B, 351: 797-805.
  • Volleth, M. 1987. Differences in the location of nucleolus organizer regions in European vespertilionid bats. Cytogenetics and Cell Genetics, 44: 186-197.
  • Volleth, M. 1989. Karyotypevolution und phylogenie der Vespertilionidae (Mammalia: Chiroptera). Ph.D. Thesis, University of Erlangen-Nürnberg, Erlangen, Germany.
  • Volleth, M., and K.-G. Heller. 1994a. Karyosystematics of plecotine bats: a reevaluation of chromosomal data. Journal of Mammalogy, 75: 602-606.
  • Volleth, M., and K.-G. Heller. 1994b. Phylogenetic relationships of vespertilionid genera (Mammalia: Chiroptera) as revealed by karyological analysis. Zeitschrift für Zoologische Systematik und Evolutions-forschung, 32: 11-34.
  • Volleth, M., and C. R. Tidemann. 1989. Chromosome studies in three genera of Australian vespertilionid bats and their systematic implications. Zeitschrift für Säugetierkunde, 54: 215-222.
  • Volleth, M., and C. R. Tidemann. 1991. The origin of the Australian Vespertilioninae bats, as indicated by chromosomal studies. Zeitschrift für Säugetierkunde, 56: 321-330.
  • Volleth, M., G. Bronner, M. C. Göpfert, K.-G. Heller, O. von Helversen, and H.-S. Yong. 2001. Karyotype comparison and phylogenetic relationships of Pipistrellus-like bats (Vespertilionidae; Chiroptera; Mammalia). Chromosome Research, 9: 25-46.
  • Volleth, M., K.-G. Heller, R. A. Pfeiffer, and H. Hameister. 2002. A comparative ZOO-FISH analysis in bats elucidates the phylogenetic relationships between Megachiroptera and five microchiropteran families. Chromosome Research, 10: 477-497.
  • Waterman, M. S., M. Eggert, and F. Lander. 1992. Parametric sequence comparisons. Proceedings of the National Academy of Sciences, USA, 89: 6090-6093.
  • Wheeler, W. C. 1995. Sequence alignment, parameter sensitivity, and the phylogenetic analysis of molecular data. Systematic Biology, 44: 321-331.
  • Wheeler, W. C., J. Gatesy, and R. DeSalle. 1995. Elision: a method for accommodating multiple molecular sequence alignments with alignment-ambiguous sites. Molecular Phylogenetics and Evolution, 4: 1-9.
  • Wheeler, W., and D. Gladstein. 1991. MALIGN: Program and documentation-version 1.5. American Museum of Natural History, New York.
  • Whelan, S., P. Liň, and N. Goldman. 2001. Molecular phylogenetics: state-of-the-art methods for looking into the past. Trends in Genetics, 17: 262-272.
  • Whiting, M. F., J. C. Carpenter, Q. D. Wheeler, and W. C. Wheeler. 1997. The Strepsiptera problem: phylogeny of the holometabolous insect orders inferred from 18S and 28S ribosomal DNA sequences and morphology. Systematic Biology, 46: 1-68.
  • Wiens, J. J. 1998. Combining data sets with different phylogenetic histories. Systematic Biology, 47: 568-581.
  • Wilcox, T. P., D. J. Zwickl, T. A. Heath, and D. M. Hillis. 2002. Phylogenetic relationships of the dwarf boas and a comparison of Bayesian and bootstrap measures of phylogenetic support. Molecular Phylogenetics and Evolution, 25: 361-371.
  • Williams, D. F., and M. A. Mares. 1978. Karyological affinities of the South American big-eared bat, Histiotus montanus (Vespertilionidae). Journal of Mammalogy, 59: 844-846.
  • Wilson, A. C., R. L. Cann, S. M. Carr, M. George, U. B. Gyllensten, K. M. Helm-Bychowski, R. G. Higuchi, S. R. Palumbi, E. M. Prager, R. D. Sage, and M. Stoneging. 1985. Mitochondrial DNA and two perspectives on evolutionary genetics. Biological Journal of the Linnean Society, 26: 375-400.
  • Yang, Z. 1996. Maximum likelihood models for combined analyses of multiple sequence data. Journal of Molecular Evolution, 42: 587-596.
  • Yoshiyuki, M. 1989. A systematic study of the Japanese Chiroptera. National Science Museum, Tokyo, 258 pp.
  • Zima, J., and I. Horáček. 1985. Synopsis of karyotypes of vespertilionid bats (Mammalia: Chiro- ptera). Acta Universitatis Carolinae-Biologica, 1981: 311-329.
  • Zima, J., M. Volleth, I. Horáček, J. Červený, and M. Macholan. 1992. Karyotypes of two
  • species of bats, Otonycteris hemprichii and Pipistrellus tramatus (Chiroptera: Vespertilionidae). Pp. 237-242, in Prague studies in mammalogy (I. Horáček and V. Vohralík, eds.). Charles University Press, Praha, 245 pp.

Uwagi

PL
Rekord w opracowaniu

Typ dokumentu

Bibliografia

Identyfikatory

Identyfikator YADDA

bwmeta1.element.agro-4487b4b7-1b9b-4422-be26-bb59f5d13cfe
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.