PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
2014 | 23 | 1 |

Tytuł artykułu

Biomarkers of leguminous plant viability in response to soil contamination with diclofenac

Warianty tytułu

Języki publikacji

EN

Abstrakty

EN
Pharmaceuticals have become an emerging environmental protection problem due to their presence in water and soil ecosystems. Reliable cell viability biomarkers (mitochondrial and cytosol distribution of cytochrome c oxidase activity), germination, and growth of seedlings were assessed to be sensitive endpoints of diclofenac toxicity. Moreover, the content of soluble carbohydrates in seedlings of three leguminous plants was an additional indicator of germination. The tested diclofenac concentrations (from 0 to 12 mM) in the three plant species (lupin, pea, and lentil) resulted in increased activity of the enzyme in cytosol, and a decreased activity in mitochondrions. The increase of the cytochrome c oxydase activity in cytosol was most rapid in pea and slowest in lupin. The decrease in mitochondrions was gradual, yet in roots growing in the soil contaminated with 12 mM of diclofenac, from 35 to 68% of total enzyme activity leaked from the mitochondrion to the cytoplasm. The dynamics of seedling growth was a better parameter of soil contamination with diclofenac than germination. On the basis of the described morphological and biochemical features, it was found that diclofenac is decidedly less phytotoxic toward leguminous plants (lupin, pea, lentil) than e.g. sulfamethazine. The research has shown that carbohydrate metabolism is a good parameter of seedling growth, but it is not an indicator of contamination and thus cannot be applied to assess soil ecosystem contamination with medicines.

Wydawca

-

Rocznik

Tom

23

Numer

1

Opis fizyczny

p.263-269,fig.,ref.

Twórcy

  • Department of Plant Physiology and Biotechnology, University of Warmia and Mazury in Olsztyn, Oczapowskiego 1 A, 10-722 Olsztyn, Poland
  • Department of Plant Physiology and Biotechnology, University of Warmia and Mazury in Olsztyn, Oczapowskiego 1 A, 10-722 Olsztyn, Poland
autor
  • Department of Plant Physiology and Biotechnology, University of Warmia and Mazury in Olsztyn, Oczapowskiego 1 A, 10-722 Olsztyn, Poland
autor
  • Department of Environmental Toxicology, University of Warmia and Mazury in Olsztyn, Prawochenskiego 17, 10-722 Olsztyn, Poland
  • Department of Environmental Health Science, Medical University of Warsaw, Banacha 1, 02-097 Warsaw, Poland

Bibliografia

  • 1. KÜMMERER K. Pharmaceuticals In the Environment. Annu. Rev. Energ. Environ. 35, 57, 2010.
  • 2. SALLMANN A.R. The history of diclofenac. Amer. J. Med. 80, (4B), 29, 1986.
  • 3. MARTIN G.M., STOCKFLETH E. Diclofenac sodium 3% gel for the management of actinic keratosis: 10+ years of cumulative evidence of efficacy and safety. J. Drugs Dermatol. 11, (5), 600, 2012.
  • 4. GAN T.J. Diclofenac: An update on its mechanism of action and safety profile. Curr. Med. Res. Opin. 26, (7), 1715, 2010.
  • 5. DUTTA N.K., DASTIDAR S.G., KUMAR A., MAZUMDAR K., RAY R., CHAKRABARTY A.N. Antimycobacterial activity of the antiinflammatory agent diclofenac sodium, and its synergism with streptomycin. Braz. J. Microbiol. 35, (4), 316, 2004.
  • 6. MCCORMACK P.L., SCOTT L.J. Diclofenac sodium injection (DylojectR): In postoperative pain. Drugs, 68, (1), 123, 2008.
  • 7. KIENZLER J.L., GOLD M. Diclofenac potassium 12.5 mg liquid capsules: Earlier and higher exposure to diclofenac. A fasted, single-dose, comparative, bioavailability study versus diclofenac potassium 12.5 mg tablets. Int. J. Clin. Pharm. 50, (6), 438, 2012.
  • 8. KARTHIKEYAN M., UMARUL M.A.K., MEGHA M., SHADEER H.P. Formulation of diclofenac tablets for rapid pain relief. Asian Pac. J. Trop. Med. 2, (1), 308, 2012.
  • 9. SUI Q., WANG B., ZHAO W., HUANG J., YU G., DENG S., QIU Z., LU S. Identification of priority pharmaceuticals in the water environment of China. Chemosphere, 89, (3), 280, 2012.
  • 10. FENT K., WESTON A., CAMINADA D. Ecotoxicology of human pharmaceuticals. Aquatic Toxicol. 76, 122, 2006.
  • 11. ZWIENER C., FRIMMEL F.H. Oxidative treatment of pharmaceuticals in water. Water Res. 34, 1881, 2000.
  • 12. OAKS J.L., GILBERT M., VIRANI M.Z., WATSON R.T., METEYER C.U., RIDEOUT B.A., SHIVAPRASAD H.L., AHMED S., CHAUDHRY M.J.I., ARSHAD M., MAHMOOD S., ALI A., KHAN A.A. Diclofenac residues as the cause of vulture population decline in Pakistan. Nature. 427, 630, 2004.
  • 13. SWAN G.E., CUTHBERT R., QUEVEDO M., GREEN R.E., PAIN D.J., BARTELS P., CUNNINGHAM A.A., DUNCAN N., MEHARG A., OAKS J.L., PARRY-JONES J., SCHULTZ S., TAGGART M.A., VERDOORN G.H., WOLTER K. Toxicity of diclofenac in gyps vultures. Biol. Lett. 2, 1, 2006.
  • 14. SCHWAIGER J., FERLING H., MALLOW U., WINTERMAYR H., NEGELE R.D. Toxic effects of the non-steroidal anti-inflammatory drug diclofenac. Part I. Histopathological alterations and bioaccumulation in rainbow trout. Aquat. Toxicol. 68, (2), 141, 2004.
  • 15. FOWLER P.D., SHADFORTH M.F., CROOK P.R., JOHN V.A. Plasma and synovial fluid concentrations of diclofenac sodium and its major hydroxylated metabolites during longterm treatment of rheumatoid arthritis. Eur. J. Clin. Pharmacol. 25, 389, 1983.
  • 16. PACKER J.L., WERNER J.J., LATCH D.E., MCNEILL K., ARNOLD W.A. Photochemical fate of pharmaceuticals in the environment: Naproxen, diclofenac, clofibric acid, and ibuprofen. Aquat. Sci. 65, (4), 342, 2003.
  • 17. ZHANG Y., GEISSEN S.U., GAL C. Carbamazepine and diclofenac: removal in wastewater treatment plants and occurrence in water bodies. Chemosphere, 73, 1151, 2008.
  • 18. ADOMAS B., ANTCZAK-MARECKA J., NAŁĘCZ-JAWECKI G., PIOTROWICZ-CIEŚLAK A.I. Phyotoxicity of enrofloxacin soil pollutant to narrow-leaved lupin plant. Pol. J. Environ. Stud. 22, (1), 71, 2013.
  • 19. PIOTROWICZ-CIEŚLAK A.I., ADOMAS B., NAŁĘCZJAWECKI G., MICHALCZYK D.J. Phytotoxicity of sulfamethazine soil pollutant to six legume plant species. J. Toxicol.. Environ. Health – Part A. 73, (17-18), 1220, 2010.
  • 20. IWATA S., OSTERMEIER C., LUDWIG B., MICHEL H. Structure at 2.8 Å resolution of cytochrome c oxidase from Paracoccus denitrificans. Nature. 376, 660, 2002.
  • 21. PECINA P., HOUSTKOVÁ H., HANSÍKOVÁ H., ZEMAN J., HOUSTEK J. Genetic defects of cytochrome c oxidase assembly. Physiol. Rev. 53, (1), 213, 2004.
  • 22. ZEE J.M., GLERUM D.M. Defects in cytochrome oxidase assembly in humans: lessons from yeast. Biochem. Cell Biol. 84, (6), 859, 2006.
  • 23. PIOTROWICZ-CIEŚLAK A.I. Composition of seed soluble carbohydrates and ultrastructural diversity of testa in lupins from the Mediterranean Region. Acta Soci. Bot. Pol. 74, (4), 281, 2005.
  • 24. PIOTROWICZ-CIEŚLAK A.I., ADOMAS B., MICHALCZYK D.J. Different glyphosate phytotoxicity to seeds and seedlings of selected plant species. Pol. J. Environ. Stud. 19, (1), 123, 2010.
  • 25. JIN C., CHEN Q., SUN R., ZHOU Q., LIU J. Eco-toxic effects of sulfadiazine sodium sulfamonomethoxine sodium and enrofloxacin on wheat, Chinese cabbage and tomato. Ecotoxicol. 18, (7), 878, 2009.
  • 26. MIGLIORE L., COZZOLINO S., FIORI M. Phytotoxicity to and uptake of enrofloxacin in crop plants. Chemosphere, 52, 1233, 2003.
  • 27. TERNES T.A. Occurence of drugs in German sewage treatment plants and rivers. Water Res. 32, 3245, 1998.
  • 28. BUSER H.R., POIGER T., MÜLLER M.D. Occurrence and fate of the pharmaceutical drug diclofenac in surface waters: rapid photodegradation in a lake. Environ. Sci. Technol. 32, 3449, 1998.
  • 29. GOYOAGA C., BURBANO C., CUADRADO C., ROMERO C., GUILLAMÓN E., VARELA A., PEDROSA M.M., MUZQUIZ M. Content and distribution of protein, sugars and inositol phosphates during the germination and seedling growth of two cultivars of Vicia faba. J. Food Compos. Anal. 24, (3), 391, 2011.
  • 30. SARDA S., PAGE C., PICKUP K., SCHULZ-UTERMOEHL T., WILSON I. Diclofenac metabolism in the mouse: novel in vivo metabolites identified by high performance liquid chromatography coupled to linear ion trap mass spectrometry. Xenobiotica. 42, (2), 179, 2012.
  • 31. HUBER C., BARTHA B., SCHRÖDER, P. Metabolism of diclofenac in plants - Hydroxylation is followed by glucose conjugation. J. Hazard. Material. 243, 250, 2012.
  • 32. BIBI Z. Role of cytochrome P450 in drug interactions. Nutr. Metab. 5, (1), 27, 2008.
  • 33. ZHOU X., CHAN K., YEUNG J.H.K. Herb-drug interactions with danshen (salvia miltiorrhiza): A review on the role of cytochrome P450 enzymes. Drug Metab. Drug Interact. 27, (1), 9, 2012.
  • 34. GAIKOVITCH E.A., CASCORBI I., MROZIKIEWICZ P.M., BROCKMÖLLER J., FROTSCHL R., KÖPKE K., GERLOFF T., CHERNOV J.N., ROOTS I. Polymorphisms of drug-metabolizing enzymes CYP2C9, CYP2C19, CYP2D6, CYP1A1, NAT2 and P-glycoprotein in a Russian population. Eur. J. Clin. Pharmacol. 59, (4), 303, 2003.
  • 35. WITKAMP R.F., NIJMEIJER S.M., NORDHOEK Y.H., VAN MIERT A.S.J.P.A.M. Sulfamethazine as a model compound to assess sex-hormone dependent cytochrome P450 activity in rats. Drug Metab. Disposit. 21, 441, 1993.
  • 36. LI Y., PARK J.S., DENG J.H., BAI Y. Cytochrome c oxidase subunit IV is essential for assembly and respiratory function of the enzyme complex. J. Bioener. Biomembr. 38, (5-6), 283, 2006.

Typ dokumentu

Bibliografia

Identyfikatory

Identyfikator YADDA

bwmeta1.element.agro-44710dcf-b50c-4c6e-82c4-1574603324f0
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.