PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
2018 | 27 | 4 |

Tytuł artykułu

Synthesizing colloidal zinc oxide nanoparticles for effective disinfection; impact on the inhibitory growth of Pseudomonas aeruginosa on the surface of an infectious unit

Autorzy

Warianty tytułu

Języki publikacji

EN

Abstrakty

EN
Pseudomonas aeruginosa has innate characteristics of developing resistance. Therefore, it is obligatory to find the new antipseudomonal agents: Zno colloidal nanoparticles (NPs) synthesized via chemical deposition method. Then, TEM, SEM, DLS, and UV-visible were done. Sampling was achieved from not the same sections of infectious unit and then Pseudomonas aeruginosa was isolated from hospital and its antibiotic resistance pattern was determined. Disc diffusion, cavity, MIC, and MBC tests were done. Absorption of UV-visible occurred at about 350 nm. The mid-range of hydrodynamic diameter and the average size of the ZnO NPs were 1.48 um and 5 nm, respectively. Isolated Pseudomonas aeruginosa was resistant to Trimethoprim, Ampicillin, and Nitrofurantoin. The disc diffusion and cavity test of antibiotic-resistant Pseudomonas aeruginosa showed respectively the least sensitivity to ZnO (DIZ = 8 mm and 5 mm) in comparison of standard strain of Pseudomonas aeruginosa (DIZ = 10 mm and 8 mm). According to the results, ZnO NPs could kill all antibiotic-resistant bacteria at a ratio of 1:16 (MBC = 7.5 ppm). However, it was able to eliminate the standard strain of Pseudomonas aeruginosa at a ratio of 1:64 (MBC = 0.937 ppm). This study demonstrated that ZnO NPs have high potential for disinfection of infectious units of hospitals against nosocomial infection – especially by Pseudomonas aeruginosa.

Słowa kluczowe

Wydawca

-

Rocznik

Tom

27

Numer

4

Opis fizyczny

p.1639-1645,fig.,ref.

Twórcy

autor
  • Department of Environmental Sciences, Ardabil Branch, Islamic Azad University, Ardabil, Iran
autor
  • Department of Environmental Sciences, Ardabil Branch, Islamic Azad University, Ardabil, Iran

Bibliografia

  • 1. Nadaf N., Kanase S. Antibacterial activity of Silver Nanoparticles singly and in combination with third generation antibiotics against bacteria causing hospital acquired infections biosynthesized by isolated Bacillus marisflavi YCIS MN 5. Dig J Nanomaterial Biostructure, 10 (4), 1189, 2015.
  • 2. De Bentzmann S., Plésiat P. The Pseudomonas aeruginosa opportunistic pathogen and human infections. Environmental microbiology, 13 (7), 1655, 2011.
  • 3. Hardalo C., Edberg S.C. Pseudomonas aeruginosa: assessment of risk from drinking water. Critical reviews in microbiology, 23 (1), 47, 1997.
  • 4. Mena K.D., Gerba C.P. Risk assessment of Pseudomonas aeruginosa in water, in Reviews of Environmental Contamination and Toxicology 201, Springer. 71, 2009.
  • 5. Tran C.S., Rangel S. M., Almblad H., Kierbel A., Givskov M., Tolker-Nielsen T., Hauser A.R., Engel J.N. The Pseudomonas aeruginosa type III translocon is required for biofilm formation at the epithelial barrier. PLoS Pathog, 10 (11), e1004479, 2014.
  • 6. Hancock R.E., Speert D.P. Antibiotic resistance in Pseudomonas aeruginosa: mechanisms and impact on treatment. Drug resistance updates, 3 (4), 247, 2000.
  • 7. Aloush V., Navon-Venezia S., Seigman -Igra Y., Cabili S., Carmeli Multidrug-resistant Pseudomonas aeruginosa: risk factors and clinical impact. Antimicrobial agents and chemotherapy, 50 (1), 43, 2006.
  • 8. Yayan J., Ghebremedhin B., Rasche K. Antibiotic resistance of pseudomonas aeruginosa in pneumonia at a single university hospital center in germany over a 10-year period. Plos one, 10 (10), e0139836, 2015.
  • 9. Reddy K.M., Feris K., Bell J., Wingett D.G., Hanley C., Punnoose A. Selective toxicity of zinc oxide nanoparticles to prokaryotic and eukaryotic systems. Applied physics letters, 90 (21), 213902, 2007.
  • 10. Jafari A., Majidpour A., Safarkar R., Mirnurollahi S.M., Arastoo The Synthesis and Characterizes of Nano-Metallic Particles Against Antibiotic Resistant Bacteria, Isolated from Rasoul-e-Akram Hospital’s Patients, Tehran, Iran. Journal of Molecular Biology Research, 6 (1), 80, 2016.
  • 11. Ghosh T., Bandhu Das A., Jena B., Pradhan Ch. Antimicrobial effect of silver zinc oxide (Ag-ZnO) nanocomposite particles. Frontiers in Life Science, 8 (1), 47, 2015.
  • 12. Jafari A., Ghane M., Sarabi M., Siyavoshifar F. Synthesis and antibacterial properties of zinc oxide combined with copper oxide nanocrystals. Oriental Journal of Chemistry, 27 (3), 811, 2011.
  • 13. Dudley M.N., Paul G.A., Sujata M.B., William A.C., Ferraro M.J., Jones R.N. Background and rationale for revised Clinical and Laboratory Standards Institute interpretive criteria (breakpoints) for Enterobacteriaceae and Pseudomonas aeruginosa: I. Cephalosporins and aztreonam. Clinical infectious diseases, 56 (9), 1301, 2013.
  • 14. Dabbagh M.A., Moghimipour E., Ameri A., Sayfoddin N. Physicochemical characterization and antimicrobial activity of nanosilver containing hydrogels. Iranian Journal of Pharmaceutical Research, 21, 2010.
  • 15. Meulenkamp E.A., Synthesis and growth of ZnO nanoparticles. The Journal of Physical Chemistry B, 102 (29), 5566, 1998.
  • 16. Tomaszewska E., Soliwoda K., Kadziola K., Tkacz-Szczesna B., Celichowski G., Cichomski M., Szmaja W., Grobelny Detection limits of DLS and UV-Vis spectroscopy in characterization of polydisperse nanoparticles colloids. Journal of Nanomaterials, 2013, 60, 2013.
  • 17. Esmaeili F., Rajabnejhad S., Partoazar A.R., Mehr S.E., Faridi-Majidi R., Sahebgharani M., Syedmoradi L., Rajabnejhad M.R., Amani A. Anti-inflammatory effects of eugenol nanoemulsion as a topical delivery system. Pharmaceutical development and technology, 21 (7), 887, 2016.
  • 18. Mitrano D.M., Lesher E.K., Bednar A., Monserud J., Higgins C.P., Ranville J.F. Detecting nanoparticulate silver using single-particle inductively coupled plasma-mass spectrometry,. Environmental Toxicology Chemistry, 31 (1), 115, 2012.
  • 19. Degueldre C., Favarger P.-Y., Wold S. Gold colloid analysis by inductively coupled plasma-mass spectrometry in a single particle mode. Analytica Chimica Acta, 555 (2), 263, 2006.
  • 20. Gschwind S., Hagendorfer H., Daniel A.F., Günther D. Mass quantification of nanoparticles by single droplet calibration using inductively coupled plasma mass spectrometry. Analytical chemistry, 85 (12), 5875, 2013.
  • 21. Yin H., Langford R., Burrell R. Comparative evaluation of the antimicrobial activity of ACTICOAT antimicrobial barrier dressing. Journal of Burn Care & Research, 20 (3), 195, 1999.
  • 22. Jafari A., Kharazi Sh., Mosavari N., Movahedzadeh F., Tebyaniyan M., Jafari Nodooshan S., Majidpour A., Mosavi T. Synthesis of Mixed Metal oxides Nano-Colloidal Particles and Investigation of the Cytotoxicity Effects on the Human Pulmonary cell lines: A prospective Approach in Anti-Tuberculosis Inhaled Nanoparticles. Orint. J. Chem, 33 (3), 2017.
  • 23. Nigmatullin R.R., Nigmatullin R.R., Osokin S.I., Baleanu D., Al-Amri S., Azam A., Memic A. The first observation of memory effects in the infrared (FT-IR) measurements: do successive measurements remember each other? PloS one, 9 (4), e94305, 2014.
  • 24. Hajipour M.J., Fromm K.M., Ashkarran A.A., Jimenez de Aberasturi D., de Larramendi I.R., Rojo T.T., Serpooshan V., Parak W.J., Mahmoudi M. Antibacterial properties of nanoparticles. Trends in biotechnology, 30 (10), 499, 2012.
  • 25. Lee J.-H., Kim Y.-G., Cho M.H., Lee J. ZnO nanoparticles inhibit Pseudomonas aeruginosa biofilm formation and virulence factor production. Microbiological research, 169 (12), 888, 2014.
  • 26. Padmavathy N., Vijayaraghavan R. Enhanced bioactivity of ZnO nanoparticles – an antimicrobial study. Science and Technology of Advanced Materials, 9 (3), 035004, 2008.
  • 27. Chaudhari V., Gunjal S., Mehta M. Antibiotic resistance patterns of Pseudomonas aeruginosa in a tertiary care hospital in Central India. 2013.
  • 28. Gan X., Liu T., Zhong J., Liu X., Li G. Effect of silver nanoparticles on the electron transfer reactivity and the catalytic activity of myoglobin. ChemBioChem, 5 (12), 1686, 2004.
  • 29. Ren G., Ren G1, Hu D., Cheng E.W., Vargas-Reus M.A., Reip P., Allaker R.P. Characterisation of copper oxide nanoparticles for antimicrobial applications. International journal of antimicrobial agents, 33 (6), 587, 2009.
  • 30. Ruparelia J.P., Chatterjee A.K., Duttagupta S.P., Mukherji S. Strain specificity in antimicrobial activity of silver and copper nanoparticles. Acta biomaterialia, 4 (3), 707, 2008.
  • 31. Dortet L., Poirel L., Nordmann P. Rapid identification of carbapenemase types in Enterobacteriaceae and Pseudomonas spp. by using a biochemical test. Antimicrobial agents and chemotherapy, 56 (12), 6437, 2012.
  • 32. Yang L., MAO J., Zhang X., XUE T., Hou T., Wang L., TU M. Preparation and characteristics of Ag/nano-ZnO composite antimicrobial agent. Nanoscience. 11 (1), 44, 2006.
  • 33. Fu G., Vary P.S., Lin C.-T. Anatase TiO2 nanocomposites for antimicrobial coatings. The Journal of Physical Chemistry B, 109 (18), 8889, 2005.
  • 34. Stoimenov P.K., Rosalyn L.K., George L.M., Kenneth J.K. Metal oxide nanoparticles as bactericidal agents. Langmuir, 18 (17), 6679, 2002.
  • 35. Brayner R., Ferrari -Iliou R., Brivois N., Djediat Sh., Benedetti M.F., Fiévet F. Toxicological impact studies based on Escherichia coli bacteria in ultrafine ZnO nanoparticles colloidal medium. Nano Letters, 6 (4), 866, 2006.
  • 36. Jones N., Ray B., Ranjit K.T., Manna A.C., Antibacterial activity of ZnO nanoparticle suspensions on a broad spectrum of microorganisms. FEMS microbiology letters, 279 (1), 71, 2008.
  • 37. Sawai J. Quantitative evaluation of antibacterial activities of metallic oxide powders (ZnO, MgO and CaO) by conductimetric assay. Journal of microbiological methods, 54 (2), 177, 2003.

Typ dokumentu

Bibliografia

Identyfikatory

Identyfikator YADDA

bwmeta1.element.agro-4448e6ef-44b8-4856-8087-86f340489351
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.