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INTRODUCTION

Planning of tilth and designing of tillage tools require such a thorough
knowledge of the mechanical properties of agricultural soils as possible.
In course of tilth the equilibrum existing earlier in the soil breaks down,
a new distribution of stress develops followed by a timedependent defor-
mation and a transient effect in stress and the process settles only after
a space of time. Thus, certainly it is necessary to be acquainted with the
changes in the mechanical properties (deformation, stress) of the soil for
a longer period. The course of the process also depends on the mechanical
history of the soil, which must be taken into account by investigating
any new process. Therefore, it is not sufficient to investigate merely
the mechanical parameters (deformation, stress) of the soil, but also their
evolution in time is to be taken into consideration and such a model is
to be developed for the soil under investigation, that is capable to describe
the behaviour of the soil in any period of time.

MODELLING OF SOILS

In course of the macrorheological investigation of soils a one-to-one
phenomenological relationship is ought for between two fundamental
dynamical and kinetical quantities: the stress (force, moment) and the
relative deformation (tensile or angular strain, distortion). This can be
done most naturally by considering the specimen as a system, and inves-
tigating how do the output parameters of the system change as functions
of time, if the input parameters vary in time regularly. The specimen,

as a system, is illustrated by the scheme on Fig. 1. where X = X (t) is

-
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the vector of input parameters, Y = Y (t) is the vector of output para-
meters.

In general, the system can be described only by simultaneous relation-
ships between several input and output para-
meters. In recent case we restrict ourselves
on systems with one variable (one input and
B one output variable), such as uniaxial com-
Fig. 1 Soii “sample as pression. In case of uniaxial rheological expe-

a system riments the phenomenon can be described by
the equation of state

X() 1

f(o,¢6,t) = 0. (1)

Rheological phenomena can generally be divided into two classes:
creeping phenomena and relaxation phenomena. In case of creeping
phenomena the generator function o (t) is regarded as input para-
meter, the response function ¢ (t) as output parameter. Inversely, in
case of relexation phenomena ¢ (t) is taken as input, o (t) as

E(z)

a4
output. Here o (t) ———1s the nominal stress, ¢ (t) = i) , is the rela-

L

tive deformation, both regarded as functions of time.

The specimen prepared from agricultural soil can generally be re-
garded as a continuum exhibiting elastic and viscoelastic properties. With
respect to its rheological behaviour, in many cases this continuum can
be approximated well by a model composed of concentrated linear ele-
ments, springs and dashpots. The mass plays no role in this case, inas-
much as the processes take place slowly and the originating inertial
forces can be neglected. Since the model contains only linear elements
and the elements of the system are considered time invariant, the model
can be described by a linear differential equation with constant coeffi-
cients. The general form of the differential equation is

n dro m dre
o+ Ybr——ae+ Ya* . 2
k2=:1 dlk kz_:l dtk ( )

Here, the relation between m and n can be either m=n or m=n-+1.
In certain cases the value of the constant a, is ao = ©. The general solu-
tion of differential equation (2) is composed of two parts:

— the general or transient solution of the homogeneous equation and,

— the particular or stationary solution of the inhomogeneous equa-
tion.

The general solution of differential equation (2) satisfying the initial
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conditions yields the response function of the model for a given input
signal.

The Laplace transformation is an excellent tool for solving differential
equation (2), respectively for determining the response function, since it
converts the differential equation and the response function into algeb-
raic equation. If the system was energy-free before the effect of the
input signal, then we obtain

o(p) _ .

as the Laplace transform of differential equation (2), where

(n(_ Gotpay+pia,+ - + p"am
Z(p(_ 1__|_Pbl_|_p2b2_'_.Pnbn (4)

Here p is a complex variable, its dimension is [1/s]. The possible va-
lues of m and n are again either man orm = n + 1.

The fuction Z* (p) relating generation and response depends only on
the properties of the system (specimen), that is to say, it is a characte-
ristic fuction of the sytem termed also transfer function. It can be con-
cluded from equation (4) that the transfer function can be characterized
by (m + n + 1) data. Coefficients a and b of function Z* (p) are always
real numbers. )

The transfer function Z% (p) of equation (4) can be transcribed by
root-factorization into the form

my WP —3)(p—5;) " (p—5m)
2O = B p—p)(p—p,) - (p—p) (5)

In equation (5) the p/s mean the root loci of the denominator, that is,
the poles of Z* (p) (denoted with x), while the s/s mean the root loci of
the numerator, that is the zeros of Z* (p) (denoted with O). Thus by the
ratio am/b, together with the pattern of poles and zeros the model can
be completely characterized (see Figures 7-16). The poles and zeros of
the transmission function Z* (p) of models composed of springs and
dashpots, if plotted on the complex plane, are arranged alternately on
the negative real axis.

CONNECTION OF SPRINGS AND DASHPOTS

Being acquainted with the transfer function Z* (p) of a model the
connection of the model composed of springs and dashpots as well as the
values of its elements can be determined. The number of constants
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a and b in the function Z* (p) equals to the minimal number of springs
and dashpots constituting the model. The connection of the model can
be determined most simply by decompcsing the function Z* (p) into par-
tial fractions (Foster synthesis) or expanding it into chain fractions
(Cauer synthesis). By use of various procedures several models different
in connection but~completely equivalent in behaviour can be obtained
(see Figures 7-16). The constants of models of different connection but
equivalent behaviour can be converted in each other on the basis of their
Z* (p) function. '

According to equations (2), (3), and (4) the Z* (p) function of a model
composed of a single spring is

- Z*(p) = E,

E is the elastic modulus [kp/m?]. The model is shown in Fig. 2.
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Figs. 2 and 3. Models consisting of one spring and one dashpot respectively

The Z* (p) function of a model composed of a single dashpot is

Z*(p) =P,

5 is the viscosity [kp * s/m2] The model can be viewed in Fig. 3.
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Figs. 4 and 5. Different connections of spring and dashpot

Figure 4 exhibits the scheme of a model consisting of the parallel
array of a spring and a dashpot. The Z* (p) function of the model is

Z*(p)=E + pn.
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In case of series array the inverse summation of the Z* (p) functions
of the spring and the dashpot yields the inverse of the resultant Z* (p)
function

' E
Zx(p)=E><pn=731’I;j—q-

The model of series array is illustrated in Fig. 5.

The compound connection of springs and dashpots is demonstrated
in Fig. 6. The parallel array of the spring E, and the dashpot #; is conne-
cted in series with spring E,. The resultant Z* (p) function is

Z* (p) = E; X (Ey + p n),

Symbol X refers to inverse summation.
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Figs. 7-16. Several models
different in connections but
equivalent in behaviour

Fig. 6. Complex rheolo-
gic model

On the above bases the Z* (p) function of any model composed of
springs and dashpots can easily be constructed.

CLASSIFICATION OF MODELS COMPOSED OF SPRINGS AND DASHPOTS

Rheological models can also be classified according to the value of
their Z~ (p‘) function at p = 0 and p = oo. This method of classification
provides a rather good survey on models composed of springs and dash-
pots connected in various ways. Namely, as it could be seen before, mo-
dels of different connection may possess the same Z* (p) function, thus
the types of models can be characterized best by their Z* (p) functions
and their plot on the p-plane. It can be concluded from equation (4) that
at p =0 the function Z* (p) may assume two sort of values depending

on whether a, = 0 or a, 0, namely:

_ _—"Z" (p) = real finite (@, %~ 0),
Z* (p) =0 (a, = 0).
P 0\ (p
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At p = o0 Z* (p) may assume again two
sort of values depending on the relation bet-
ween the degree of the denominator and the

numerator

~ oo /ZI (p) = real finite (m = n),
e ~_Z% (p) = o© (m=n + 1).

L]

On that basis all of the models composed of springs and dashpots may

be divided into four classes according to Table 1.
In Table 2 the differential equations and Z* (p) functions are indica-

ted for every class. The connections of the models as well as their sym-
bolical scheme on the p-plane are shown in Figures 7-16.
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Table 2 gives a guidance concerning to the possibility of extension of
ted for every class. The connections of the models as well as their sym-
transfer functions Z* (p).

On the basis of our measurements the rheological behaviour of agri-
cultural soils proved to be best approximated by the models of classes I
and III.
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Table 1
Classification of models
Z*(p)
Class Comment
p=0 p =00
I real finite’ real finite Hooke, Poynting —
Thomson etc.
11 0 , oo Newton, Jeffreys etc.
- III real finite o0 Voigt— Kelvin etc.
v 0 real finite Mazxwell, Burgers, etc.
Differential equations and Z* (p) functions of models Table 2
Class I
Narne Figu- Differe'ntial Transfer function
re equation Z* (p)
Hooke elastic body 7 G =0aé¢ -513:

. . . ao + pa
Poyting-Thomson body 8 o =ape + aje — bo -1—+P-b—:
Extended Poyting-Thom- o el alé _ b,ol n o + pas + pa;

son body 9 .e - 1 pby + p7b
(5 terms) + a,e — byo 1 “
Class 11
. . bpay
Newton fluid body 10 G=as¢ ‘ =5
* - o pay + p’a;
Jeffreys model 11 o6 =a & —bo+ a¢ 1+ pb,
Extended Jeffreys g = a,é — blc} + az'a: — pa, + p’a, + pas
i =
model (5 terms) 12 v g + G 1 «f pb\, + p2b,
Class III
. . e * a4 + Pay
Voigt-Kelvin body 13 G = Qo€ + ;€ -1
Extended Voigt-Kelvin 2
. . oe + a + a
body 14 6 =0a0t + a6 — b0+ a¢ = 11:—1 bp ;
D01
(4 terms) .
Class IV
. L] pa1
Mazxwell body 15 o=a t—bo T + pb,

N . e .e pal + Pzaz
Burgers body 16 o=ae—bo+ ae—bo 1 + pb, + p%b;
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Z. Miiller

KLASYFIKACJA MODELI REOLOGICZNYCH
SKEADAJACYCH SIE ZE SPREZYN I TLUMIKOW

Streszczenie

Autor wykazal, Ze reologiczne zachowanie sie wielu rodzajéw gleb moze byé
z wystarczajacym przyblizeniem opisane za pomocg modeli reologicznych sklada-
jacych sie ze sprezyn i tlumikéw. Modele te we wszystkich przypadkach dajg sie
sprowadzi¢ do liniowego réwnania rézniczkowego o stalym wspélczynniku. Przy
pomocy transformacji Laplace’a mozna podzieli¢ wszystkie tego typu modele na
cztery klasy. Kazdg Kklasge charakteryzuje podobienstwo zachowania sie modeli
i r6wnan opisujgcych je.

3. Mwanep

KIACCUDPUKAIIUA PEOJOTUYECKUX MOJIEJEM
COCTABJIEHHBIX U3 IIPY2KVH U BYPEPOB

Pe3wMe

ABTOp YCTAaHOBMJI, YTO PEOJIOTMYECKOe IOBefeHMe MHOMIX BUJOB IIOYB MOXKHO
C YJIOBJIETBOPUTEJNLHBIM NPUONUIKEHMEM ONMCAaTh C MNOMOLILIO PEOJIOTMYEeCKNX MO-
ZeJieil, coCTaBJIEHHBIX M3 NPYXMH M OydepoB. 3TU MOZEIY MOIKHO BO BCEX CIydasaX
CBeCTM K JMHENHOMY InddepeHUAILHOMY YPaBHEHMIO C ITOCTOAHHBIM KO3gQduimeH-
ToMm. C nomouibio TpaHccdopmanmm Jlanaaca Bce 3TOro poaa MoAeNy MOIKHO pPas3feanTb
Ha 4eThbIpe KJjacca. KaxK/Ablil KjlacC ¥apaKTepu3yeTca CXOLHBIM MOBEAESHUEM MOZeJeil

¥i OIIMCBIBAIOLLMX MX YPaBHEHUN.'



